Open Access
Issue |
E3S Web Conf.
Volume 430, 2023
15th International Conference on Materials Processing and Characterization (ICMPC 2023)
|
|
---|---|---|
Article Number | 01255 | |
Number of page(s) | 16 | |
DOI | https://doi.org/10.1051/e3sconf/202343001255 | |
Published online | 06 October 2023 |
- Valiev, Ruslan Zafarovich, Rinat K. Islamgaliev, and Igor V. Alexandrov. “Bulk nanostructured materials from severe plastic deformation.” Progress in materials science 45.2 (2000): 103-189. http://dx.doi.org/10.1016/S0079-6425(99)00007-9. [CrossRef] [Google Scholar]
- Segal, V. M. “Materials processing by simple shear.” Materials Science and Engineering: A 197.2 (1995): 157-164. https://doi.org/10.1016/0921-5093(95)09705-8. [CrossRef] [Google Scholar]
- Chung, Young Hoon, and Kyong Hwan Lee. “An analysis of accumulated deformation in the equal channel angular rolling (ECAR) process.” Metals and Materials International 12.4 (2006): 289-292. https://doi.org/10.1007/BF03027545. [CrossRef] [Google Scholar]
- Yoon, S. C., et al. “Die design for homogeneous plastic deformation during equal channel angular pressing.” Journal of Materials Processing Technology 187 (2007): 46-50. https://doi.org/10.1016/j.jmatprotec.2006.11.117. [CrossRef] [Google Scholar]
- Song, H. R., Y. S. Kim, and W. J. Nam. “Mechanical properties of ultrafine grained 5052 Al alloy produced by accumulative roll-bonding and cryogenic rolling.” Metals and Materials International 12.1 (2006): 7-12. https://doi.org/10.1007/BF03027516. [CrossRef] [Google Scholar]
- Kim, Hyoung Seop, Min Hong Seo, and Sun Ig Hong. “On the die corner gap formation in equal channel angular pressing.” Materials Science and Engineering: A 291.1-2 (2000): 86-90. https://doi.org/10.1016/S0921-5093(00)00970-9. [CrossRef] [Google Scholar]
- Kim, Hyoung Seop. “Finite element analysis of equal channel angular pressing using a round corner die.” Materials Science and Engineering: A 315.1-2 (2001): 122-128. https://doi.org/10.1016/S0921-5093(01)01188-1. [CrossRef] [Google Scholar]
- Kim, Hyoung Seop. “Evaluation of strain rate during equal-channel angular pressing.” Journal of materials research 17.1 (2002): 172-179. https://doi.org/10.1557/JMR.2002.0026. [CrossRef] [Google Scholar]
- Dumoulin, S., et al. “Finite element modeling of equal channel angular pressing: Effect of material properties, friction and die geometry.” Materials Science and Engineering: A 410 (2005): 248-251. https://doi.org/10.1016/j.msea.2005.08.103. [CrossRef] [Google Scholar]
- Kim, Hyoung Seop, et al. “Process modelling of equal channel angular pressing for ultrafine grained materials.” Materials transactions 45.7 (2004): 2172-2176.. https://doi.org/10.2320/matertrans.45.2172. [CrossRef] [Google Scholar]
- Afifi, Mohamed A., et al. “Characterization of precipitates in an Al-Zn-Mg alloy processed by ECAP and subsequent annealing.” Materials Science and Engineering: A 712 (2018): 146-156. https://doi.org/10.1016/j.msea.2017.11.091. [CrossRef] [Google Scholar]
- Kim, Hyoung Seop, Sun Ig Hong, and Min Hong Seo. “Effects of strain hardenability and strain-rate sensitivity on the plastic flow and deformation homogeneity during equal channel angular pressing.” Journal of Materials Research 16.3 (2001): 856-864.. https://doi.org/10.1557/JMR.2001.0113. [CrossRef] [Google Scholar]
- Kim, Hyoung Seop. “Finite element analysis of equal channel angular pressing using a round corner die.” Materials Science and Engineering: A 315.1-2 (2001): 122-128. https://doi.org/10.1016/S0921-5093(01)01188-1. [CrossRef] [Google Scholar]
- Suh, Jin-Yoo, et al. “Finite element analysis of material flow in equal channel angular pressing.” Scripta Materialia 44.4 (2001): 677-681. https://doi.org/10.1016/S1359-6462(00)00645-X. [CrossRef] [Google Scholar]
- Hall, E. O. “The deformation and ageing of mild steel: III discussion of results.” Proceedings of the Physical Society. Section B 64.9 (1951): 747. https://doi.org/10.1088/0370-1301/64/9/30. [CrossRef] [Google Scholar]
- Lee, Dong Nyung. “An upper-bound solution of channel angular deformation.” Scripta materialia 43.2 (2000): 115-118. https://doi.org/10.1016/S1359-6462(00)00377-8. [CrossRef] [Google Scholar]
- Valiev, Ruslan Z., et al. “Structure and deformaton behaviour of Armco iron subjected to severe plastic deformation.” Acta Materialia 44.12 (1996): 4705-4712. https://doi.org/10.1016/S1359-6454(96)00156-5. [CrossRef] [Google Scholar]
- Vinogradov, A., et al. “Fatigue properties of 5056 Al-Mg alloy produced by equal-channel angular pressing.” Nanostructured Materials 11.7 (1999): 925-934. https://doi.org/10.1016/S0965-9773(99)00392-X. [CrossRef] [Google Scholar]
- Lee, Sungwon, et al. “Developing superplastic properties in an aluminum alloy through severe plastic deformation.” Materials Science and Engineering: A 272.1 (1999): 63-72. https://doi.org/10.1016/S0921-5093(99)00470-0. [CrossRef] [Google Scholar]
- Kolobov, Yu R., et al. “Diffusion—Induced creep of polycrystalline and nanostructured metals.” Nanostructured Materials 12.5-8 (1999): 1127-1130. https://doi.org/10.1016/S0965-9773(99)00311-6 . [CrossRef] [Google Scholar]
- Kolobov, Yu R., et al. “Grain boundary diffusion and mechanisms of creep of nanostructured metals.” Interface Science 10.1 (2002): 31-36. https://doi.org/10.1023/A:1015128928158. [CrossRef] [Google Scholar]
- Mulyukov, R., et al. “Internal friction and shear modulus in submicrograined Cu.” Nanostructured materials 6.5-8 (1995): 577-580. https://doi.org/10.1016/0965-9773(95)00124-7. [CrossRef] [Google Scholar]
- Iwahashi, Yoshinori, et al. “The process of grain refinement in equal-channel angular pressing.” Acta materialia 46.9 (1998): 3317-3331. https://doi.org/10.1016/S1359-6454(97)00494-1. [CrossRef] [Google Scholar]
- Nakashima, Kiyotaka, et al. “Influence of channel angle on the development of ultrafine grains in equal-channel angular pressing.” Acta materialia 46.5 (1998): 1589-1599. https://doi.org/10.1016/S1359-6454(97)00355-8. [CrossRef] [Google Scholar]
- Berbon, Patrick B., et al. “Influence of pressing speed on microstructural development in equal-channel angular pressing.” Metallurgical and Materials Transactions A 30.8 (1999): 1989-1997. https://doi.org/10.1007/s11661-999-0009-9. [CrossRef] [Google Scholar]
- Kim, Hyoung Seop, Sun Ig Hong, and Min Hong Seo. “Effects of strain hardenability and strain-rate sensitivity on the plastic flow and deformation homogeneity during equal channel angular pressing.” Journal of Materials Research 16.3 (2001): 856-864. https://doi.org/10.1557/JMR.2001.0113. [CrossRef] [Google Scholar]
- Gholinia, A., P. B. Prangnell, and M. V. Markushev. “The effect of strain path on the development of deformation structures in severely deformed aluminium alloys processed by ECAE.” Acta materialia 48.5 (2000): 1115-1130. https://doi.org/10.1016/S1359-6454(99)00388-2. [CrossRef] [Google Scholar]
- Yamashita, Akihiro, et al. “Influence of pressing temperature on microstructural development in equal-channel angular pressing.” Materials Science and Engineering: A 287.1 (2000): 100-106. https://doi.org/10.1016/S0921-5093(00)00836-4. [CrossRef] [Google Scholar]
- Stolyarov, V. V., et al. “A two step SPD processing of ultrafine-grained titanium.” Nanostructured Materials 11.7 (1999): 947-954. https://doi.org/10.1016/S0965-9773(99)00384-0. [CrossRef] [Google Scholar]
- DeLo, D. P., and S. L. Semiatin. “Hot working of Ti-6Al-4V via equal channel angular extrusion.” Metallurgical and Materials Transactions A 30.9 (1999): 2473-2481. https://doi.org/10.1016/S0965-9773(99)00384-0. [CrossRef] [Google Scholar]
- Hong, S. I., G. T. Gray III, and J. J. Lewandowski. “Dynamic deformation behavior of Al Zn Mg Cu alloy matrix composites reinforced with 20 Vol.% SiC.” Acta metallurgica et materialia 41.8 (1993): 2337-2351. https://doi.org/10.1016/0956-7151(93)90314-I. [CrossRef] [Google Scholar]
- Semiatin, S. L., et al. “Workability of commercial-purity titanium and 4340 steel during equal channel angular extrusion at cold-working temperatures.” Metallurgical and Materials Transactions A 30.5 (1999): 1425-1435. https://doi.org/10.1007/s11661-999-0290-7. [CrossRef] [Google Scholar]
- DeLo, D. P., and S. L. Semiatin. “Finite-element modeling of nonisothermal equal-channel angular extrusion.” Metallurgical and Materials Transactions A 30.5 (1999): 1391-1402. https://doi.org/10.1007/s11661-999-0287-2. [CrossRef] [Google Scholar]
- Semiatin, S. L., and D. P. DeLo. “Equal channel angular extrusion of difficult-to-work alloys.” Materials & Design 21.4 (2000): 311-322. https://doi.org/10.1016/S0261-3069(99)00085-0. [CrossRef] [Google Scholar]
- H. T. Zhou, Q. B. Li, Z. K. Zhao, Z. C. Liu, S. F. Wen, Q.D. Wang, Hot Workability Characteristics of Magnesium Alloy AZ80—A Study Using Processing Map, Materials Science and Engineering A 527 (2010) 2022–2026. https://doi.org/10.1016/j.msea.2009.12.009. [CrossRef] [Google Scholar]
- M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto, T. G. Langdon, The Shearing Characteristics Associated With Equal-Channel Angular Pressing, Materials Science and Engineering A, 257 (1998), pp. 328–332. https://doi.org/10.1016/S0921-5093(98)00750-3. [CrossRef] [Google Scholar]
- Samsudin, M. H. M., Denni Kurniawan, and Fethma M. Nor. “Strain distribution equal channel angular pressing of magnesium alloy at 90 and 120 corner angles.” Procedia Manufacturing 2 (2015): 230-235. https://doi.org/10.1016/j.promfg.2015.07.040 [CrossRef] [Google Scholar]
- A. P. Zhilyaev, T. G. Langdon, Using high-pressure torsion for metal processing fundamentals and applications, Progress in Materials Science, 53 (2008), pp. 893–979. https://doi.org/10.1016/j.pmatsci.2008.03.002. [CrossRef] [Google Scholar]
- Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, R.G. Hong, Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process, Scripta Materialia, Vol. 39, No. 9, (1998), pp. 1221-1227. https://doi.org/10.1016/S1359-6462(98)00302-9. [CrossRef] [Google Scholar]
- G. Faraji, M. M Mashhadi, H. S. Kim, Tubular channel angular pressing (TCAP) as a novel severe plastic deformation method for cylindrical tubes, Materials Letters, 65 (2011), pp. 3009–3012. https://doi.org/10.1016/j.matlet.2011.06.039. [CrossRef] [Google Scholar]
- G. Z. Quan, Y. Shi, Y. X. Wang, B. S. Kang, T. W. Ku, W. J. Song, Constitutive Modeling for the Dynamic recrystallization Evolution of AZ80 Magnesium Alloys Based on Stress Strain Data, Material Science and Engineering A 528 (2011) 8051-8059. https://doi.org/10.1016/j.msea.2011.07.064. [CrossRef] [Google Scholar]
- Awasthi, A., Saxena, K.K., Dwivedi, R.K. et al. Design and analysis of ECAP Processing for Al6061 Alloy: a microstructure and mechanical property study. Int J Interact Des Manuf (2022). https://doi.org/10.1007/s12008-022-00990-2 . [Google Scholar]
- Akash Gupta, K. K. Saxena, Ajaya Bharti, Jayahari Lade, Kanwal Chadha & Prudvi Reddy Paresi (2022) Influence of ECAP processing temperature and number of passes on hardness and microstructure of Al-6063, Advances in Materials and Processing Technologies, 8:sup3, 1635-1646, DOI: 10.1080/2374068X.2021.1953917 . [Google Scholar]
- Krishna Mohan Agarwal, R K Tyagi, Vikas Choubey & Kuldeep K Saxena (2022) Mechanical behaviour of Aluminium Alloy AA6063 processed through ECAP with optimum die design parameters, Advances in Materials and Processing Technologies, 8:2, 1901-1915, DOI: 10.1080/2374068X.2021.1878705 . [CrossRef] [Google Scholar]
- Krishna Mohan Agarwal, R K Tyagi & Kuldeep K Saxena (2022) Deformation analysis of Al Alloy AA2024 through equal channel angular pressing for aircraft structures, Advances in Materials and Processing Technologies, 8:1, 828-842, DOI: 10.1080/2374068X.2020.1834756 . [CrossRef] [Google Scholar]
- Singh, Nagendra, Dr. Manoj Kumar Agrawal, Sanjeev Kumar Verma, and Ashish Kumar Tiwari. “A Review on Effect of Stress and Strain Distribution on the AA5083 With Respect to Different Channel Angle of ECAP.” International Research Journal on Advanced Science Hub 04.03 March (2022): 57–66. http://dx.doi.org/10.47392/irjash.2022.013. [Google Scholar]
- K.K. Saxena, k. Basanth Kumar and A. Gupta, Effect of processing parameters on equal-channel angular pressing of aluminum alloys: An overview, Materials Today: Proceedings, https://doi.org/10.1016/j.matpr.2021.02.303 . [Google Scholar]
- Akash Gupta; Balla Chandrasekhar; Kuldeep K. Saxena; (2021). Effect of Equal-channel angular pressing on mechanical Properties: An overview . Materials Today: Proceedings, (), –. doi:10.1016/j.matpr.2021.02.317. [Google Scholar]
- Krishna Mohan Agarwal, R K Tyagi & Kuldeep K Saxena (2022) Deformation analysis of Al Alloy AA2024 through equal channel angular pressing for aircraft structures, Advances in Materials and Processing Technologies, 8:1, 828-842, DOI: 10.1080/2374068X.2020.1834756 . [CrossRef] [Google Scholar]
- Nagendra Singh; Manoj Kumar Agrawal; Sanjeev Kumar Verma; Ashish Kumar Tiwari. “Study of the effect of ECAPed Method on the Mechanical Properties of AA 5083: An Overview”. International Research Journal on Advanced Science Hub, 4, 06, 2022, 186-191. doi: 10.47392/irjash.2022.044. [CrossRef] [Google Scholar]
- Singh, Nagendra, Dr. Manoj Kumar Agrawal, Sanjeev Kumar Verma, and Ashish Kumar Tiwari. “A Review on Effect of Stress and Strain Distribution on the AA5083 With Respect to Different Channel Angle of ECAP.” International Research Journal on Advanced Science Hub 04.03 March (2022): 57–66. http://dx.doi.org/10.47392/irjash.2022.013. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.