Open Access
Issue
E3S Web Conf.
Volume 430, 2023
15th International Conference on Materials Processing and Characterization (ICMPC 2023)
Article Number 01256
Number of page(s) 17
DOI https://doi.org/10.1051/e3sconf/202343001256
Published online 06 October 2023
  1. Khan SA, Alam T, Khan MS, Blecich P, Kamal MA, Gupta NK, et al. Life Cycle Assessment of Embodied Carbon in Buildings: Background, Approaches and Advancements. Buildings. 2022;12(11):1944. [Google Scholar]
  2. Alam MA, Kumar R, Banoriya D, Yadav AS, Goga G, Saxena KK, et al. Design and development of thermal comfort analysis for air-conditioned compartment. International Journal on Interactive Design and Manufacturing (IJIDeM). 2022;In press. [Google Scholar]
  3. Absar Alam M, Kumar R, Yadav AS, Arya RK, Singh VP. Recent developments trends in HVAC (heating, ventilation, and air-conditioning) systems: A comprehensive review. Materials Today: Proceedings. 2023;In press. [Google Scholar]
  4. Fan M, Fu Z, Wang J, Wang Z, Suo H, Kong X, et al. A review of different ventilation modes on thermal comfort, air quality and virus spread control. Building and Environment. 2022;212:108831. [CrossRef] [Google Scholar]
  5. Underfloor Air Distribution: Overview and Benefits “https://www.ny-engineers.com/blog/underfloor-air-distribution-overview-and-benefits” (accessed Feb 21, 2023). [Google Scholar]
  6. Li A, Yang C, Ren T, Bao X, Qin E, Gao R. PIV experiment and evaluation of air flow performance of swirl diffuser mounted on the floor. Energy and Buildings. 2017;156:58-69. [CrossRef] [Google Scholar]
  7. Zhang M, Zhang Z, Hu Y, Geng Y, Huang H, Huang Y. Effect of raised floor height on different arrangement of under-floor air distribution performance in data center. Procedia Engineering. 2017;205:556-64. [CrossRef] [Google Scholar]
  8. Zhang K, Zhang X, Li S. Simplified model for desired airflow rate in underfloor air distribution (UFAD) systems. Applied Thermal Engineering. 2016;93:244-50. [CrossRef] [Google Scholar]
  9. Kitagawa H, Asawa T, Kubota T, Trihamdani AR, Mori H. Thermal storage effect of radiant floor cooling system using phase change materials in the hot and humid climate of Indonesia. Building and Environment. 2022;207:108442. [CrossRef] [Google Scholar]
  10. William MA, Suárez-López MJ, Soutullo S, Fouad MM, Hanafy AA, El-Maghlany WM. Multi-objective integrated BES-CFD co-simulation approach towards pandemic proof buildings. Energy Reports. 2022;8:137-52. [CrossRef] [Google Scholar]
  11. Faraj K, Khaled M, Faraj J, Hachem F, Chahine K, Castelain C. Energetic and economic analyses of integrating enhanced macro-encapsulated PCM’s with active underfloor hydronic heating system. Energy Reports. 2022;8:848-62. [CrossRef] [Google Scholar]
  12. Shi G, Qiu A, Yang Z. A hierarchical layout approach for underfloor heating systems in single-family residential buildings. Energy and Buildings. 2022;268:112208. [CrossRef] [Google Scholar]
  13. Lin YJP, Linden PF. A model for an under floor air distribution system. Energy and Buildings. 2005;37(4):399-409. [CrossRef] [Google Scholar]
  14. Zukowski M. A new formula for determining a minimum recommended value of inlet air velocity from UFAD system to prevent occupants from draught risk. Building and Environment. 2007;42(1):171-9. [CrossRef] [Google Scholar]
  15. Cubi Montanya E. Performance of underfloor air distribution systems, temperature stratification and ventilation effectiveness in the child development centre. 2009. [Google Scholar]
  16. Wang Y, Quan Z, Xu Z, Zhao Y, Wang Z. Heating performance of a novel solar–air complementary building energy system with an energy storage feature. Solar Energy. 2022;236:75-87. [CrossRef] [Google Scholar]
  17. Blad C, Bøgh S, Kallesøe CS. Data-driven Offline Reinforcement Learning for HVAC-systems. Energy. 2022;261:125290. [CrossRef] [Google Scholar]
  18. Kwok HHL, Cheng JCP, Li ATY, Tong JCK, Lau AKH. Impact of shaft design to thermal comfort and indoor air quality of floors using BIM technology. Journal of Building Engineering. 2022;51:104326. [CrossRef] [Google Scholar]
  19. Goga G, Shahid Afridi M, Mewada C, Prasad J, Mohan R, Yadav AS, et al. Heat transfer enhancement in solar pond using nano fluids. Materials Today: Proceedings. 2023;In press. [Google Scholar]
  20. S Shrivastava V, Yadav AS, Shrivastava N. Comparative Study of the Performance of Double-Pass and Single-Pass Solar Air Heater with Thermal Storage. In: Kumar A, Pal A, Kachhwaha SS, Jain PK, editors. Recent Advances in Mechanical Engineering, Lecture Notes in Mechanical Engineering. Singapore: Springer; 2021. p. 227-37. [CrossRef] [Google Scholar]
  21. Shrivastava V, Yadav AS, Shrivastava N. Thermal performance assessment of greenhouse solar dryer. In: Kumar R, Pandey AK, Sharma RK, Norkey G, editors. Recent Trends in Thermal Engineering, Lecture Notes in Mechanical Engineering Singapore: Springer; 2022. p. 75-82. [Google Scholar]
  22. Chouksey VK, Yadav AS, Raha S, Shrivastava V, Shrivas SP. A theoretical parametric analysis to optimize the bed depth of packed bed solar air collector. International Journal of Green Energy. 2021;19(07):775-85. [Google Scholar]
  23. Yadav AS, Prakash Shukla O, Singh Bhadoria R. Recent advances in modeling and simulation techniques used in analysis of solar air heater having ribs. Materials Today: Proceedings. 2022;62:1375-82. [CrossRef] [Google Scholar]
  24. Yadav AS, Gupta S, Agrawal A, Saxena R, Agrawal N, Nashine S. Performance enhancement of solar air heater by attaching artificial rib roughness on the absorber Plate. Materials Today: Proceedings. 2022;63:706-17. [CrossRef] [Google Scholar]
  25. Yadav AS, Thapak MK. Artificially roughened solar air heater: A comparative study. International Journal of Green Energy. 2016;13(2):143-72. [CrossRef] [Google Scholar]
  26. Yadav AS, Thapak MK. Artificially roughened solar air heater: Experimental investigations. Renewable and Sustainable Energy Reviews. 2014;36:370-411. [CrossRef] [Google Scholar]
  27. Yadav AS, Gattani A. Revisiting the influence of artificial roughness shapes on heat transfer enhancement. Materials Today: Proceedings. 2022;62:1383-91. [CrossRef] [Google Scholar]
  28. Yadav AS, Gattani A. Solar thermal air heater for sustainable development. Materials Today: Proceedings. 2022;60:80-6. [CrossRef] [Google Scholar]
  29. Yadav AS. CFD investigation of effect of relative roughness height on Nusselt number and friction factor in an artificially roughened solar air heater. Journal of the Chinese Institute of Engineers. 2015;38(4):494-502. [CrossRef] [Google Scholar]
  30. Prasad R, Yadav AS, Singh NK, Johari D. Heat Transfer and Friction Characteristics of an Artificially Roughened Solar Air Heater. In: Saha P, Subbarao PMV, Sikarwar BS, editors. Advances in Fluid and Thermal Engineering, Lecture Notes in Mechanical Engineering. Singapore: Springer; 2019. p. 613-26. [Google Scholar]
  31. Yadav AS, Sharma SK. Numerical Simulation of Ribbed Solar Air Heater. In: Sikarwar BS, Sundén B, Wang Q, editors. Advances in Fluid and Thermal Engineering, Lecture Notes in Mechanical Engineering. Singapore: Springer; 2021. p. 549-58. [Google Scholar]
  32. Zhang Y, Zhao C, Olofsson T, Nair G, Yang B, Li A. Field measurements and numerical analysis on operating modes of a radiant floor heating aided by a warm air system in a large single-zone church. Energy and Buildings. 2022;255:111646. [CrossRef] [Google Scholar]
  33. Brandt P, Grønvig M, Rong L, Zhang G, Gautam KR, Kristensen JK, et al. The effect of floor cooling on respiration rate and distribution of pigs in the pen. Livestock Science. 2022;257:104832. [CrossRef] [Google Scholar]
  34. Cesari S, Emmi G, Bottarelli M. A weather forecast-based control for the improvement of PCM enhanced radiant floors. Applied Thermal Engineering. 2022;206:118119. [CrossRef] [Google Scholar]
  35. Underfloor air conditioning “https://www.flexiblespace.com/how-ufac-works/” (accessed Feb 21 2023). [Google Scholar]
  36. Ryu S-W, Park D-Y. Effect of blind angles on thermal decay in the UFAD system in summer. Applied Thermal Engineering. 2022;215:118927. [CrossRef] [Google Scholar]
  37. Yamanaka T, Kuranaga M, Maeda T, Kitakaze H. Cooling performance of Ceiling Radiant Textile Air Conditioning System with Ceiling Cassette Unit of Packaged Air Conditioner. E3S Web Conf. 2019;111. [Google Scholar]
  38. Lei L, Liu W. Predictive control of multi-zone variable air volume air-conditioning system based on radial basis function neural network. Energy and Buildings. 2022;261:111944. [CrossRef] [Google Scholar]
  39. Lee H-Y, Chang H-J. A Study on the Improvement of Indoor Thermal and Air Environment Made by Ceiling Cassette Type Cooling and Heating Unit in Classrooms. Journal of the Korean Solar Energy Society. 2012;32(6):141-8. [CrossRef] [Google Scholar]
  40. Joe J. Investigation on pre-cooling potential of UFAD via model-based predictive control. Energy and Buildings. 2022;259:111898. [CrossRef] [Google Scholar]
  41. Tian S, Su X, Geng Y. Review on heat pump coupled desiccant wheel dehumidification and air conditioning systems in buildings. Journal of Building Engineering. 2022;54:104655. [CrossRef] [Google Scholar]
  42. Cao S, Li F, Li X. Numerical study on settlement characteristics of inhalable particles in under-floor air distribution system. Journal of Building Engineering. 2022;45:103481. [CrossRef] [Google Scholar]
  43. Lu L, Chen J, Su T, Liu X, Hu Y, Luo Q, et al. An RC-network model in the frequency domain for radiant floor heating coupled with envelopes. Building and Environment. 2022;225:109617. [CrossRef] [Google Scholar]
  44. Li R, Sekhar SC, Melikov AK. Thermal comfort and IAQ assessment of under-floor air distribution system integrated with personalized ventilation in hot and humid climate. Building and Environment. 2010;45(9):1906-13. [CrossRef] [Google Scholar]
  45. Schiavon S, Lee KH, Bauman F, Webster T. Simplified calculation method for design cooling loads in underfloor air distribution (UFAD) systems. Energy and Buildings. 2011;43(2):517-28. [CrossRef] [Google Scholar]
  46. Xue G, Lee K, Jiang Z, Chen Q. Thermal environment in indoor spaces with under-floor air distribution systems: Part 2. Determination of design parameters (1522-RP). HVAC&R Research. 2012;18(6):1192-201. [CrossRef] [Google Scholar]
  47. Zhou X, Liu Y, Zhang J, Ye L, Luo M. Radiant asymmetric thermal comfort evaluation for floor cooling system – A field study in office building. Energy and Buildings. 2022;260:111917. [CrossRef] [Google Scholar]
  48. Alajmi AF, Abou-Ziyan HZ, El-Amer W. Energy analysis of under-floor air distribution (UFAD) system: An office building case study. Energy Conversion and Management. 2013;73:78-85. [CrossRef] [Google Scholar]
  49. Xue Y, Chen Q. Influence of floor plenum on energy performance of buildings with UFAD systems. Energy and Buildings. 2014;79:74-83. [CrossRef] [Google Scholar]
  50. Pasut W, Bauman F, De Carli M. The use of ducts to improve the control of supply air temperature rise in UFAD systems: CFD and lab study. Applied Energy. 2014;134:490-8. [CrossRef] [Google Scholar]
  51. Alajmi AF, Baddar FA, Bourisli RI. Thermal comfort assessment of an office building served by under-floor air distribution (UFAD) system – A case study. Building and Environment. 2015;85:153-9. [CrossRef] [Google Scholar]
  52. Zhang S, Niu D, Li T, Lin Z, Cheng F, Cheng Y. Cooling effect of air movement on heating performances of advanced air distribution. Building and Environment. 2022;226:109775. [CrossRef] [Google Scholar]
  53. Singh H, Arora BB. Effect of swirl flow on characteristics of the annular diffuser. IOP Conference Series: Materials Science and Engineering. 2021;1168(1):012029. [CrossRef] [Google Scholar]
  54. Crespi G, Abbà I, Corgnati SP. Innovative metrics to evaluate HVAC systems performances for meeting contemporary loads in buildings. Energy Reports. 2022;8:9221-31. [CrossRef] [Google Scholar]
  55. Zhu D, Liu S, Rahman MZ, Guo S, Yang Z. Experimental and numerical study on a new floor heating system using carbon fiber tape embedded in cement mortar. Journal of Building Engineering. 2022;56:104699. [CrossRef] [Google Scholar]
  56. Ebrahimi M, Huang Q, He X, Zheng X. Effects of Variable Diffuser Vanes on Performance of a Centrifugal Compressor with Pressure Ratio of 8.0. Energies2017. [Google Scholar]
  57. Hui SCM, Yichun MZ. Analysis of cooling load calculations for underfloor air distribution systems. Conference Analysis of cooling load calculations for underfloor air distribution systems. p. 19-20. [Google Scholar]
  58. Heidarinejad G, Shokrollahi S, Pasdarshahri H. An investigation of thermal comfort, IAQ, and energy saving in UFAD systems using a combination of Taguchi optimization algorithm and CFD. Advances in Building Energy Research. 2021;15(6):799-817. [CrossRef] [Google Scholar]
  59. Shokrollahi S, Hadavi M, Heidarinejad G, Pasdarshahri H. Multi-objective optimization of underfloor air distribution (UFAD) systems performance in a densely occupied environment: A combination of numerical simulation and Taguchi algorithm. Journal of Building Engineering. 2020;32:101495. [CrossRef] [Google Scholar]
  60. Sobhi M, Khalil EE. CFD Investigation of Air Flow Patterns and Thermal Comfort in a Room with Diverse Heating Systems. Current Environmental Engineering. 2019;6(2):150-8. [CrossRef] [Google Scholar]
  61. Yau YH, Poh KS, Badarudin A. A numerical airflow pattern study of a floor swirl diffuser for UFAD system. Energy and Buildings. 2018;158:525-35. [CrossRef] [Google Scholar]
  62. Chu G, Sun Y, Jing T, Sun Y, Sun Y. A Study on Air Distribution and Comfort of Atrium with Radiant Floor Heating. Procedia Engineering. 2017;205:3316-22. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.