Open Access
Issue
E3S Web Conf.
Volume 430, 2023
15th International Conference on Materials Processing and Characterization (ICMPC 2023)
Article Number 01272
Number of page(s) 10
DOI https://doi.org/10.1051/e3sconf/202343001272
Published online 06 October 2023
  1. A. Gruzinov and E. Waxman, Gamma-Ray Burst Afterglow: Polarization and Analytic Light Curves, Astrophys. J. 511, 852 (1999). [CrossRef] [Google Scholar]
  2. M. V. Medvedev and A. Loeb, Generation of Magnetic Fields in the Relativistic Shock of Gamma-Ray Burst Sources, Astrophys. J. 526, 697 (1999). [CrossRef] [Google Scholar]
  3. R. Schlickeiser and P. K. Cosmological Magnetic Field Generation by the Weibel Instability, The Astrophysical Journal 599, L57 (2003). [CrossRef] [Google Scholar]
  4. M. V. Medvedev, L. O. Silva, M. Fiore, R. A. Fonseca, and W. B. Mori, Generation of magnetic fields in cosmological shocks, J. Astrophys. 37, 533 (2004). [Google Scholar]
  5. M. V. Medvedev, L. O. Silva, M. Kamionkowski, Cluster Magnetic Fields from Large-Scale Structure and Galaxy Cluster Shocks, Astrophys. J. 642, L1 (2006). [CrossRef] [Google Scholar]
  6. E. S. Weibel, Spontaneously Growing Transverse Waves in a Plasma Due to an Anisotropic Velocity Distribution, Phys. Rev. Lett. 2, 83 (1959). [NASA ADS] [CrossRef] [Google Scholar]
  7. A. Kumar, R. Gupta and J. Sharma, Electomagnetic Weibel instability in spatial anisotropic plasma, AIP Advances 12, 065013 (2022). [CrossRef] [Google Scholar]
  8. E. N. Nerush, D. A. Serebryakov, and I. Y. Kostyukov, Weibel Instability in Hot Plasma Flows with the Production of Gamma-Rays and Electron–Positron Pairs, J. Astrophys. 851, 129 (2017). [CrossRef] [Google Scholar]
  9. F. Pegoraro, S. V. Bulanov, F. Califano, and M. Lontano, Nonlinear development of the Weibel instability and magnetic field generation in collisionless plasmas, Physica Scripta. T63, 262 (1996). [CrossRef] [Google Scholar]
  10. F. Califano, F. Pegoraro, and S. V. Bulanov, Spatial structure and time evolution of the Weibel instability in collisionless inhomogeneous plasmas, Phys. Rev. E. 56, 963 (1997). [CrossRef] [Google Scholar]
  11. F. Califano, F. Pegoraro, S. V. Bulanov, and A. Mangeney Kinetic saturation of the Weibel instability in a collisionless plasma, Phys. Rev. E. 57, 7048 (1998). [CrossRef] [Google Scholar]
  12. Li Ji-Wei and Pei Wen-Bing C., Effect of guiding magnetic field on Weibel instability, Phys. Lett. 22(8), 1976 (2005). [Google Scholar]
  13. A. Stockem, I. Lerche, and R. Schlickeiser, The relativistic filamentation instability in magnetized plasmas, Astrophys. J. 659, 419 (2007). [CrossRef] [Google Scholar]
  14. A. Stockem, M. E. Dieckmann, and R. Schlickeiser, Suppression of the filamentation instability by a flow-aligned magnetic field: testing the analytic threshold with PIC simulations, Astrophys. J. 50(2), 025002 (2008). [Google Scholar]
  15. M. Tatarakis, I. Watts, F. N. Beg, E. L. Clark, A. E. Dangor, A. Gopal, M. G. Haines, P. A. Norreys, U. Wagner, M. S. Wei, M. Zepf, and K. Krushelnick, Measuring huge magnetic fields, Nature, 415, 280 (2002). [CrossRef] [PubMed] [Google Scholar]
  16. L. O. Silva, R. A. Fonseca, J. W. Tonge, J. M. Dawson, W. B. Mori, and M. V. Medvedev, Interpenetrating Plasma Shells: Near-equipartition Magnetic Field Generation and Nonthermal Particle Acceleration, Astrophys. J. 596, L121 (2003). [CrossRef] [Google Scholar]
  17. V. P. Krainov, Annual Moscow Workshop, Weibel instability in plasmas produced by a super-intense femtosecond laser pulse, Annual Moscow Workshop, Physics of Nonideal Plasmas (Moscow, 3-4 December 2002) 2172 (2002). [Google Scholar]
  18. T. B. Yang, J. Arons and A. B. Langdon, Evolution of the Weibel instability in relativistic ally hot electron–positron plasmas, Phys. Plasmas 1, 3059 (1994). [CrossRef] [Google Scholar]
  19. M. Ghorbanalilu and S. Sadegzadeh Mon. Not. R. A comparative study of the filamentation and two-stream instabilities in weakly relativistic counter-streaming plasmas, Physics of plasmas 24, 012109 (2017). [CrossRef] [Google Scholar]
  20. C. Siemon, V. Khudik and G. Shvets, Analytic model of electron beam thermalization during the resistive Weibel instability, Phys. Plasmas 18, 103109 (2011). [CrossRef] [Google Scholar]
  21. M. Swisdak, Y.-H. Liu, and J. F. Drake, Development of a turbulent outflow during electron-positron magnetic reconnection , Astrophys. J. 680, 999 (2008). [CrossRef] [Google Scholar]
  22. M. Mahadavi and H. Khanzadeh, The study of thermal conditions on Weibel instability, Advances in High Energy Physics 10, 428013 (2015). [Google Scholar]
  23. D. D Ryutov, F. Fiuza, C. M. Huntington, J. S. Ross, and H.-S. Park, Collisional effects in the ion Weibel instability for two counter-propagating plasma streams , Physics of Plasma 21, 032701 (2014). [Google Scholar]
  24. R. L. Morse and C. W. Nielsen, Numerical simulation of the Weibel instability in one and two dimensions, Phys. Fluids 14, 830 (1971). [CrossRef] [Google Scholar]
  25. D. S. Lemons, D. Winske, and S. P. Gary, Numerical simulation of the Weibel instability in one and two dimensions, J. Plasmas Phys. 21, 287 (1979). [CrossRef] [Google Scholar]
  26. D. S. Lemons and D. Winske, Statistical thermodynamics of temperature anisotropy driven Weibel instabilities, J. Plasmas Phys. 23, 283 (1980). [CrossRef] [Google Scholar]
  27. A. Karmakar, N. Kumar and A. Pukhov, Detailed particle-in-cell simulations on the transport of a relativistic electron beam in plasmas, Phys. Rev. E 80, 016401 (2009). [CrossRef] [PubMed] [Google Scholar]
  28. H. H. Kaang, C. M. Ryu, and P. H. Yoon, Nonlinear saturation of relativistic Weibel instability driven by thermal anisotropy, Phys. Plasmas 16, 082103 (2009). [CrossRef] [Google Scholar]
  29. L. Palodhi, F. Califano, and F. Pegoraro, Nonlinear kinetic development of the Weibel instability and the generation of electrostatic coherent structures, Plasmas Phys. Control. Fusion 51, 125006 (2009). [CrossRef] [Google Scholar]
  30. A. Stockem, M. E. Dieckmann and R. Schlickeiser, PIC simulations of the thermal anisotropy-driven Weibel instability: field growth and phase space evolution upon saturation, Plasmas Phys. Controll. Fusion 51, 075014 (2009). [CrossRef] [Google Scholar]
  31. R. Annou and V. K. Tripathi, Effect of a large amplitude Langmuir wave on the Weibel instability, Physics Letter A 226, 193 (1997). [CrossRef] [Google Scholar]
  32. A. Kumar, R. Gupta and J. Sharma, Generation of whistler wave by parametric decay of lower hybrid wave in a complex plasma, AIP Advances 11, 115022 (2021). [CrossRef] [Google Scholar]
  33. J. Sharma and S. C. Sharma, Neutral beam driven ion cyclotron instability of lower hybrid wave in a tokamak plasma, AIP Advances 12(8), 085321 (2022). [Google Scholar]
  34. A. Kumar, R. Dhawan, R. Gupta and J. Sharma, Generation of ion cyclotron instability by parametric coupling of gyrating ion beam with lower hybrid wave in a complex plasma, Material Today: Proceedings 62(6), 3263 (2022). [Google Scholar]
  35. J. Sharma, S.C. Sharma, V. K. Jain & A. Gahlot, Excitation of lower hybrid waves by a gyrating ion beam in a negative ion plasma, Physics of Plasmas 20, 033706 (2013). [CrossRef] [Google Scholar]
  36. J. Sharma, S. C. Sharma & A. Gahlot, Kinetic theory of effect of dust charge fluctuations on the parametric decay of lower hybrid wave instability by relativistic runaway electrons in tokamak, Phys. Plasmas 28, 043701 (2021). [CrossRef] [Google Scholar]
  37. A. Gahlot, R. Walia, J. Sharma, S. C. Sharma and R. Sharma, Decay instability of an upper hybrid wave in a magnetized dusty plasma, Physics of Plasmas 20, 013706 (2013) [CrossRef] [Google Scholar]
  38. S. C. Sharma, D. Kaur, A. Gahlot, J. Sharma, Excitation of dust acoustic waves by an ion beam in a plasma cylinder with negatively charged dust grains, Physics of Plasmas 21, 10 (2014). [Google Scholar]
  39. A. Kumar, R. Gupta and J. Sharma, Effect of dust grains on the parametric coupling of a lower hybrid wave driven ion cyclotron wave in a tokamak plasma, AIP Advances 12, 035026 (2022). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.