Open Access
Issue
E3S Web Conf.
Volume 431, 2023
XI International Scientific and Practical Conference Innovative Technologies in Environmental Science and Education (ITSE-2023)
Article Number 02025
Number of page(s) 9
Section Energy Technology and Energy Systems
DOI https://doi.org/10.1051/e3sconf/202343102025
Published online 13 October 2023
  1. G. Csaba, W. Porod, Coupled oscillators for computing: A review and perspective. Applied Physics Reviews, 7, 011302 (2020) https://doi.org/10.1063/1.5120412 [Google Scholar]
  2. J. R. Westra, J. M. Chris, A. Verhoeven, H. M. van Roermund, Oscillators and Oscillator Systems: Classification, Analysis and Synthesis. N.Y. 277 (1999) doi:10.1007/978-1-4757-6117-7 [Google Scholar]
  3. M. Pufall, W. H. Rippard, G. Csaba, D. Nikonov, G. Bourianoff, W. Porod, Physical implementation of coherently coupled oscillator networks. IEEE J. Exploratory Solid-State Comput. Devices Circ., 1, 76-84 (2015) https://doi.org/10.1109/JXCDC.2015.2468070 [CrossRef] [Google Scholar]
  4. T. Meunier, S. Gleyzes, P. Maioli, A. Auffeves, Oscillations Revival Induced by Time Reversal: A Test of Mesoscopic Quantum Coherence, Phys. Rev. Lett., 94, 01 (2005) [CrossRef] [Google Scholar]
  5. G. Morigi, E. Solano, B. Englert., H. Walther, Measuring Irreversible Dynamics of a Quantum Harmonic Oscillator, Phys. Rev. A 65, 040102 (2002) [CrossRef] [Google Scholar]
  6. I. Kiss, Y. Zhai, J. Hudson, Emerging coherence in a population of chemical oscillators. Science, 296, 1676–1678 (2002) [CrossRef] [PubMed] [Google Scholar]
  7. Y. Zhai, I. Kiss, J. Hudson, Control of complex dynamics with time-delayed feedback in populations of chemical oscillators: Desynchronization and clustering,” Ind. Eng. Chem. Res., 47, 3502 (2008) [CrossRef] [Google Scholar]
  8. A. Taylor, P. Kapetanopoulos, B. Whitaker, R. Toth, L. Bull, M.Tinsley, Clusters and Switchers in Globally Coupled Photochemical Oscillators, Phys. Rev. Lett., 100, 214101 (2008) [CrossRef] [PubMed] [Google Scholar]
  9. S. Nkomo, M. Tinsley, K.Showalter, Chimera States in Populations of Nonlocally Coupled Chemical Oscillators, Phys. Rev. Lett., 110, 244102 (2013) [CrossRef] [PubMed] [Google Scholar]
  10. R. Snari, M. Tinsley, D. Wilson, S. Faramarzi, T. Netoff, J. Moehlis, K.Showalter, Desynchronization of Stochastically Synchronized Chemical Oscillators, Chaos 25, 123116 (2015) [CrossRef] [PubMed] [Google Scholar]
  11. D. Bhowmik, M. Shanahan, How well do oscillator models capture the behaviour of biological neurons. International Joint Conference on Neural Networks (IJCNN) (IEEE), 1–8 (2012) [Google Scholar]
  12. D. Goldobin, A. Pikovsky, Antireliability of noise-driven neurons. Phys.Rev. E., 73. 061906 (2006) [CrossRef] [PubMed] [Google Scholar]
  13. D. Golomb, D. Hansel, G. Mato, Mechanisms of synchrony of neural activity in large networks, Handbook of Biological Physics, Neuroinformatics and Neural Modelling. Ed. by F. Moss and S. Gielen. Amsterdam: Elsevier, 4, 887–968 (2001) [Google Scholar]
  14. S. Strogatz, From Kuramoto to crawford: Exploring the onset of synchronization in populations of coupled oscillators. Physica D, 143(1), 1–20 (2000) https://doi.org/10.1016/S0167-2789(00)00094-4 [CrossRef] [Google Scholar]
  15. E. Ott, J. Platig, T. Antonsen, M. Girvan, Echo Phenomena in Large Systems of Coupled Oscillators, Chaos, 18, 037115 (2008) [CrossRef] [PubMed] [Google Scholar]
  16. M. Herrera, T. Antonsen, E. Ott, S. Fishman, Echoes and Revival Echoes in Systems of Anharmonically Confined Atoms, Phys. Rev. A, 86, 023613 (2012) [CrossRef] [Google Scholar]
  17. J. Ritt, Evaluation of entrainment of a nonlinear neural oscillator to white noise, Phys.Rev. E., 68, 041915 (2003) [CrossRef] [Google Scholar]
  18. D. Goldobin, A. Pikovsky, Synchronization of self-sustained oscillators by common white noise, Physica A., 351(1), 126–132 (2005) [CrossRef] [Google Scholar]
  19. D. Garcia-Alvarez, A. Bahraminasab, A. Stefanovska, P. McClintock, Competition between noise and coupling in the induction of synchronization, EPL., 88, 30005 (2009) [CrossRef] [Google Scholar]
  20. K. Nagai, H. Kori, Noise-induced synchronization of a large population of globally coupled nonidentical oscillators, Phys.Rev. E., 81. 065202 (2010) [CrossRef] [Google Scholar]
  21. K. D. Battogtokh, Coexistence of coherence and incoherence in nonlocally coupled phase oscillators. Nonlinear Phenom. Complex Syst., 5, 380–385 (2002) [Google Scholar]
  22. O. Omel’chenko, Y. Maistrenko, P. Tass, Chimera states: The natural link between coherence and incoherence. Phys.Rev.Lett., 100, 044105 (2008) [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.