Open Access
Issue |
E3S Web Conf.
Volume 431, 2023
XI International Scientific and Practical Conference Innovative Technologies in Environmental Science and Education (ITSE-2023)
|
|
---|---|---|
Article Number | 05024 | |
Number of page(s) | 14 | |
Section | IT and Mathematical Modeling in the Environment | |
DOI | https://doi.org/10.1051/e3sconf/202343105024 | |
Published online | 13 October 2023 |
- P. Newman, R.Westwood, J. Westwood, Market prospects for AUVs, Mar. Technol. Rep., 50, 1–15 (2007) [Google Scholar]
- R. L. Wernli, AUVs-the maturity of the technology, In Proceedings of the Riding the Crest into the 21st Century, Oceans '99 MTS/IEEE, 13-16 September 1999, Seattle (1999) [Google Scholar]
- K. Divsalar, Improving the hydrodynamic performance of the SUBOFF bare hull model: a CFD approach, Acta Mec. Sin., 36(1), 44–56 (2020). doi: 10.1007/s10409-019-00913-7. [CrossRef] [Google Scholar]
- N. C. Groves, T. T. Huang, M. S. Chang, Geometric characteristics of DARPA suboff models: DTRC Model Nos. 5470 and 5471, David Taylor Research Center, Bethesda (1989) [Google Scholar]
- N. Friedman, Submarine Design and Development, Naval Institute Press, Annapolis, Maryland, USA (1984) [Google Scholar]
- Y. N. Kormilitsin, O. A. Khalizev, Theory of Submarine Design, Saint-Petersburg State Maritime Technical Univ., Saint-Petersburg, Russia (2001) [Google Scholar]
- H. R. Shin, H. Takanori, Numerical Simulation of Unsteady Turbulent Flow Around Maneuvering Prolate Spheroid, AIAA Journal, 40(10), 2017-2026 (2002) doi:10.2514/2.1534 [CrossRef] [Google Scholar]
- A. G. L. Holloway, T. L. Jeans, G. D. Watt, Flow separation from submarine shaped bodies of revolution in steady turning, Ocean Engineering, 108(4), 426-438 (2015) doi:10.1016/j.oceaneng.2015.07.052 [CrossRef] [Google Scholar]
- H. Kim, Zhi Quan Leong, D. Ranmuthugala, A. Forrest, Simulation and Validation of an AUV in Variable Accelerations, Int. J. Offshore Polar Eng, 25(1), 35-44 (2015) [Google Scholar]
- E. Dawson, An investigation into the effects of submergence depth, speed and hull length-to-diameter ratio on the near-surface operation of conventional submarines, University of Tasmania, Hobart, Australia (2014) [Google Scholar]
- D. Zhang, K. Dong, X. Wang, D. Feng, Hydrodynamic interaction study during surface ship overtaking submarine, Ocean Engineering, 265(1), 112602 (2022) doi: 10.1016/j.oceaneng.2022.112602 [CrossRef] [Google Scholar]
- S. A. T. Randeni, P. Z. Q. Leonga, D. Ranmuthugalaa, A. L. Forrest, J. Duffya, Numerical investigation of the hydrodynamic interaction between two underwater bodies in relative motion, Applied Ocean Research, 51, 14–24 (2015) [CrossRef] [Google Scholar]
- Zhi Quan Leong, D. Ranmuthugala, I. Penesis, H. Nguyen, Quasi-static analysis of the hydrodynamic interaction effects on an autonomous underwater vehicle operating in proximity to a moving submarine, Ocean Engineering, 106, 175-188 (2015) [CrossRef] [Google Scholar]
- C. Shishmarev, T. Khabakhpasheva, A. Korobkin, Ice response to an underwater body moving in a frozen channel, Applied Ocean Research, 91(1), 101877 (2019) doi: 10.1016 / j.apor.2019.101877 [CrossRef] [Google Scholar]
- Y. Z. Xue, L. D. Zeng, B. Y. Ni, A. A. Korobkin, T. I. Khabakhpasheva, Hydroelastic response of an ice sheet with a lead to a moving load, Phys. Fluids, 33, 037109 (2021) doi.org/10.1063/5.0037682. [CrossRef] [Google Scholar]
- V. Zemlyak, A. Pogorelova, V. Kozin, Motion of a submerged body in a near-surface water environment, International Journal of Naval Architecture and Ocean Engineering, 14, 100433 (2022) doi: 10.1016/j.ijnaoe.2021.100433 [CrossRef] [Google Scholar]
- M. Bettle, S.L. Toxopeus, A. Gerber, Calculation of bottom clearance effects on Walrus submarine hydrodynamics, International Shipbuilding Progress, 57, 101-125 (2010) [Google Scholar]
- F. R. Hama, J. D. Long, J. C. Hegarty, On Transition from Laminar to Turbulent Flow, J Appl Phys, 28, 388-394 (1957) doi:10.1063/1.1722760. [CrossRef] [Google Scholar]
- M. A. Mackay, Review of Sting Support Interference and Some Related Issues fo the Marine Dynamic Test Facility, Defence Research Establishment Atlantic, St. John's, Newfoundland (1993) [Google Scholar]
- C. Hirt, B. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, J Comput Phys, 39, 201–225 (1981) doi:39:201–225.0021.9991/81/010201-25302.00/0. [CrossRef] [Google Scholar]
- A. Y. Snegirev, High-performance calculations in applied physics. Numerical simulation of turbulent flows, Publishing House of St. Petersburg State Polytechnical University, St. Petersburg, Russian Federation (2008) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.