Open Access
Issue
E3S Web Conf.
Volume 433, 2023
2023 The 6th International Conference on Renewable Energy and Environment Engineering (REEE 2023)
Article Number 02001
Number of page(s) 12
Section Renewable Energy Power Generation and Electrification
DOI https://doi.org/10.1051/e3sconf/202343302001
Published online 09 October 2023
  1. Abd Alla, S., et al., Life-cycle approach to the estimation of energy efficiency measures in the buildings sector. 114745. 2020. [Google Scholar]
  2. Zhang, Y., et al., Modelling of energy consumption and carbon emission from the building construction sector in China, a process-based LCA approach. 134: p. 110949. 2019 [Google Scholar]
  3. Liu, Q., et al., Measurement of China’s Building Energy Consumption from the Perspective of a Comprehensive Modified Life Cycle Assessment Statistics Method. 14(8): p. 4587. 2022 [Google Scholar]
  4. Wang, P., et al., Analysis of energy consumption in Hunan Province (China) using a LMDI methodbased LEAP model. 142: p. 3160-3169. 2017 [Google Scholar]
  5. Lausselet, C., et al., LCA modelling for Zero Emission Neighbourhoods in early-stage planning. 149: p. 379-389. 2019 [Google Scholar]
  6. Nwodo, M.N., C.J.J.B. Anumba, and Environment, A review of life cycle assessment of buildings using a systematic approach. 162: p. 106290. 2019 [Google Scholar]
  7. Cabeza, L.F., et al., Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review. 29: p. 394-416. 2014 [Google Scholar]
  8. Liu, J., et al., Improvement of the energy evaluation methodology of individual office building with dynamic energy grading system. 58: p. 102133. 2020 [Google Scholar]
  9. Zhang, X.-P. and X.-M.J.E.e. Cheng, Energy consumption, carbon emissions, and economic growth in China. 68(10): p. 2706-2712. 2009 [Google Scholar]
  10. Wambui, V., et al., Socio-Techno-Economic Assessment of Electricity Development Scenarios in Kenya Using Low Emissions Analysis Platform and the Next Energy Modeling System for Optimization. [Google Scholar]
  11. Jeong, Y.-S.J.S., Assessment of alternative scenarios for CO2 reduction potential in the residential building sector. 9(3): p. 394. 2017. [Google Scholar]
  12. Subramanyam, V., et al., Energy efficiency improvement opportunities and associated greenhouse gas abatement costs for the residential sector. 2017. 118: p. 795-807. [Google Scholar]
  13. Vandenbroucke, M., et al., Using life cycle assessment to inform decision-making for sustainable buildings. 5(2): p. 536-559. 2015 [Google Scholar]
  14. Yang, D., et al., Sectoral energy-carbon nexus and low-carbon policy alternatives: A case study of Ningbo, China. 156: p. 480-490. 2017 [Google Scholar]
  15. McPherson, M. and B.J.E.P. Karney, Long-term scenario alternatives and their implications: LEAP model application of Panama’s electricity sector. 2014. 68: p. 146-157. [Google Scholar]
  16. Mirjat, N.H., et al., Long-term electricity demand forecast and supply side scenarios for Pakistan (2015–2050): A LEAP model application for policy analysis. 165: p. 512-526. 2018 [Google Scholar]
  17. RiveraGonzález, L., et al., Long-term electricity supply and demand forecast (2018–2040): A LEAP model application towards a sustainable power generation system in Ecuador. 11(19): p. 5316. 2019 [Google Scholar]
  18. Talaei, A., et al., Assessment of long-term energy efficiency improvement and greenhouse gas emissions mitigation options for the cement industry. 2019. 170: p. 1051-1066. [Google Scholar]
  19. Phillips, R., et al., Triple bottom line sustainability assessment of window-to-wall ratio in US office buildings. 182: p. 107057. 2020 [Google Scholar]
  20. Chen, Y., Z. Deng, and T.J.A.E. Hong, Automatic and rapid calibration of urban building energy models by learning from energy performance database. 277: p. 115584. 2020 [Google Scholar]
  21. Janjua, S.Y., P.K. Sarker, and W.K.J.J.o.E.M. Biswas, Development of triple bottom line indicators for life cycle sustainability assessment of residential bulidings. 264: p. 110476. 2020. [Google Scholar]
  22. Howells, M., et al., OSeMOSYS: the open-source energy modeling system: an introduction to its ethos, structure and development. 39(10): p. 5850-5870. 2011 [Google Scholar]
  23. Brouwer, F., et al., Energy modelling and the Nexus concept. 2018. 19: p. 1-6. [Google Scholar]
  24. Zhu, W., et al., Analysis of the embodied carbon dioxide in the building sector: A case of China. 269: p. 122438. 2020 [Google Scholar]
  25. DIN, E.J.I.O.f.S.G., Switzerland, 14040: Environmental Management-Life Cycle AssessmentPrinciples and Framework (ISO 14040: 2006), German and English version EN ISO 14040: 2006. 2006. [Google Scholar]
  26. Kaghembega, S.-H.W., et al., Greenhouse gas reduction and cost-benefit through improving municipal solid waste management in Ouagadougou. 14(8): p. 222-230. 2020 [Google Scholar]
  27. Hu, M.J.R., Conservation and Recycling, Building impact assessment—A combined life cycle assessment and multi-criteria decision analysis framework. 2019. 150: p. 104410. [Google Scholar]
  28. Wong, J.K.W. and J.J.A.i.c. Zhou, Enhancing environmental sustainability over building life cycles through green BIM: A review. 57: p. 156-165. 2015 [Google Scholar]
  29. Leibowicz, B.D., et al., Optimal decarbonization pathways for urban residential building energy services. 230: p. 1311-1325. 2018 [Google Scholar]
  30. Erlandsson, M., M.J.B. Borg, and environment, Generic LCA-methodology applicable for buildings, constructions and operation services—today practice and development needs. 38(7): p. 919-938. 2003 [Google Scholar]
  31. Bonamente, E. and F.J.E. Cotana, Carbon and energy footprints of prefabricated industrial buildings: A systematic life cycle assessment analysis. 8(11): p. 12685-12701. 2015 [Google Scholar]
  32. Saunders, A., et al., Extensive polymerase pausing during Drosophila axis patterning enables high-level and pliable transcription. 27(10): p. 1146-1158. 2013. [Google Scholar]
  33. Pandey, B., et al., Coupled EnergyPlus and CFD analysis of PCM for thermal management of buildings. 231: p. 110598. 2021 [Google Scholar]
  34. Balasbaneh, A.T. and W.J.T.I.J.o.L.C.A. Sher, Life cycle sustainability assessment analysis of different concrete construction techniques for residential building in Malaysia. 26(7): p. 1301-1318. 2021. [Google Scholar]
  35. Shen, P. and Z.J.J.o.C.P. Wang, how neighborhood form influences building energy use in winter design condition: Case study of Chicago using CFD coupled simulation. 261: p. 121094. 2020 [Google Scholar]
  36. Islas, J., F. Manzini, and M.J.A.A.J.o.t.H.E. Martníez, Renewable energies in electricity generation for reduction of greenhouse gases in Mexico 2025. 31(1): p. 35-39. 2002 [Google Scholar]
  37. Bart, I.L.J.L.u.p., Urban sprawl and climate change: A statistical exploration of cause and effect, with policy options for the EU. 27(2): p. 283-292. 2010. [Google Scholar]
  38. Bento, A.M., et al., The effects of urban spatial structure on travel demand in the United States. 87(3): p. 466-478. 2005 [Google Scholar]
  39. Cullen, J.B. and S.D. Levitt, Crime, urban flight, and the consequences for cities. 1999, MIT Press 238 Main St., Suite 500, Cambridge, MA 02142-1046, USA journals …. [Google Scholar]
  40. Shi, L., et al., The evolution of sustainable development theory: Types, goals, and research prospects. 11(24): p. 7158. 2019. [Google Scholar]
  41. Congedo, P.M., et al., Worldwide dynamic predictive analysis of building performance under long-term climate change conditions. 42: p. 103057. 2021 [Google Scholar]
  42. Tushar, Q., et al., An integrated approach of BIMenabled LCA and energy simulation: The optimized solution towards sustainable development. 289: p. 125622. 2021 [Google Scholar]
  43. Haddad, A.N., et al., An integrated approach of building information modelling and life cycle assessment (BIM-LCA) for gas and solar water heating systems. 2022: p. 1-17. [Google Scholar]
  44. Dauletbek, A. and P.J.J.o.B.E. Zhou, BIM-based LCA as a comprehensive method for the refurbishment of existing dwellings considering environmental compatibility, energy efficiency, and profitability: A case study in China. 46: p. 103852. 2022 [Google Scholar]
  45. Ur Rehman, H.S., et al., A multi-facet BIM based approach for Green Building design of new multifamily residential building using LEED system. 2022: p. 1-15. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.