Open Access
Issue
E3S Web Conf.
Volume 433, 2023
2023 The 6th International Conference on Renewable Energy and Environment Engineering (REEE 2023)
Article Number 01008
Number of page(s) 11
Section Environmental Chemical Engineering and Environmental Impact Assessment of the Construction Industry
DOI https://doi.org/10.1051/e3sconf/202343301008
Published online 09 October 2023
  1. United Nations Framework Convention on Climate Change. “The Paris Agreement. What is The Paris Agreement?”. United Nations Framework Convention on Climate Change (2023). https://unfccc.int/process-and-meetings/the-paris-agreement. [Google Scholar]
  2. Z. Ren, A. S. Verma, Y. Li, J. J. E. Teuwen, Z. Jiang. “Offshore wind turbine operations and maintenance: A state-of-the-art review”. Renewable and Sustainable Energy Reviews, 144 (2021). [Google Scholar]
  3. M. Lydia, S. S. Kumar, A. I. Selvakumar, G. E. Prem Kumar. “A comprehensive review on wind turbine power curve modeling techniques”. Renewable and Sustainable Energy Reviews, 30, 452-460 (2014). [CrossRef] [Google Scholar]
  4. S. A. Vargas, G. R. T. Esteves, P. M. Maçaira, B. Q. Bastos, F. L. Cyrino Oliveira, R. C. Souza. “Wind power generation: A review and a research agenda”. Journal of Cleaner Production, 218, 850-870 (2019). [CrossRef] [Google Scholar]
  5. S. D. Ahmed, F. S. M. Al-Ismail, M. Shafiullah, F. A. Al-Sulaiman, I. M. El-Amin. “Grid Integration Challenges of Wind Energy: A Review”. IEEE Access, 8, 10857-10878 (2020). [CrossRef] [Google Scholar]
  6. E. Pean, M. Pirouti, M. Qadrdan. “Role of the GBFrance electricity interconnectors in integration of variable renewable generation”. Renewable Energy, 99, 307-314 (2016). [CrossRef] [Google Scholar]
  7. P. H. A. Barra, W. C. de Carvalho, T. S. Menezes, R. A. S. Fernandes, D. V. Coury. “A review on wind power smoothing using high-power energy storage systems”. Renewable and Sustainable Energy Reviews, 137 (2021). [Google Scholar]
  8. A. K. Bashir, S. Khan, B. Prabadevi, N. Deepa, W.S. Alnumay, T. R. Gadekallu, P. K. R. Maddikunta. “Comparative analysis of machine learning algorithms for prediction of smart grid stability”. Electrical Energy Systems, International Transactions on Electrical Energy Systems, 31, 9 (2021). [Google Scholar]
  9. M. Fahim, V. Sharma, T. V. Cao, B. Canberk, T. Q. Duong. Machine Learning-Based Digital Twin for Predictive Modeling in Wind Turbines”. IEEE Access, 10, 14184-14194 (2022). [CrossRef] [Google Scholar]
  10. A. Javaid, U. Javaid, M. Sajid, M. Rashid, E. Uddin, Y. Ayaz, A. Waqas. “Forecasting hydrogen production from wind energy in a suburban environment using machine learning”. Energies, 15, 23 (2022). [Google Scholar]
  11. S. Hanifi, X. Liu, Z. Lin, S. Lotfian. “A critical review of wind power forecasting methods—past, present and future”. Energies, 13, 15, (2020). [Google Scholar]
  12. D. Karamichailidou, V. Kaloutsa, A. Alexandridis. “A critical review of wind power forecasting methods—past, present and future”. Renewable Energy, 163, 2137-2152 (2021) [CrossRef] [Google Scholar]
  13. W. Udo, Y. Muhammad. “Data-driven predictive maintenance of wind turbine based on SCADA data”. IEEE Access, 9, 162370-162388 (2021)/ [CrossRef] [Google Scholar]
  14. BVG Associates “Guide to an offshore wind farm”. BVG Associates (2019) https://www.thecrownestate.co.uk/media/2861/guide-to-offshore-wind-farm-2019.pdf. [Google Scholar]
  15. H. Rashid, E. Khalaji, J. Rasheed, C. Batunlu. “Fault prediction of wind turbine gearbox based on SCADA data and machine learning”. IEEE, 2020 10th International Conference on Advanced Computer Information Technologies, 391-395 (2020). [Google Scholar]
  16. L. Xiang, P. Wang, X. Yang, A. Hu, H. Su. “Fault detection of wind turbine based on SCADA data analysis using CNN and LSTM with attention mechanism”. Measurement, 175 (2021). [Google Scholar]
  17. Q. Lu, W. Ye, L. Yin. “ResDenIncepNet-CBAM with principal component analysis for wind turbine blade cracking fault prediction with only short time scale SCADA data”. Measurement, 212 (2023). [Google Scholar]
  18. A. Zaher, S. D. J. McArthur, D. G. Infield. “Online wind turbine fault detection through automated SCADA data analysis”. Wind Energy, 12, 574-593 (2009). [CrossRef] [Google Scholar]
  19. S. O. Erikstad. “Merging physics, big data analytics and simulation for the next-generation digital twins”. HIPER 2017 (2017). [Google Scholar]
  20. A. Coraddu, L. Oneto, F. Baldi, F. Cipollini, M. Atlar, S. Savio. “Data-driven ship digital twin for estimating the speed loss caused by the marine fouling”. Ocean Engineering, 186 (2019). [Google Scholar]
  21. Z. Lin, X. Liu, M. Collu. “Wind power prediction based on high-frequency SCADA data along with isolation forest and deep learning neural networks”. International Journal of Electrical Power & Energy Systems, 118 (2020). [Google Scholar]
  22. I. Delgado, M. Fahim. “Wind turbine data analysis and LSTM-based prediction in SCADA system”. Energies, 14, 1 (2021). [Google Scholar]
  23. S-X. Lv, L. Wang. “Deep learning combined wind speed forecasting with hybrid time series decomposition and multi-objective parameter optimization”. Applied Energy, 31 (2022). [Google Scholar]
  24. S-h. Hur. “Short-term wind speed prediction using Extended Kalman filter and machine learning”. Energy Reports, 7, 1046-1054 (2021). [CrossRef] [Google Scholar]
  25. M. Yesilbudak, S. Sagiroglu, S. I. Colak. “A novel implementation of kNN classifier based on multitupled meterological input data for wind power prediction”. Energy Conversion and Management, 135, 434-444 (2017). [CrossRef] [Google Scholar]
  26. A. D. Mehr, R. Farhangi, A. R. Ghiasi. “The validity of deep learning computational model for wind speed simulation”. IEE, 2021 7th International Confrence on Control, Instrumentation and Automation (2021). [Google Scholar]
  27. M. Singh, E. Fuenmayor, E. P. Hinchy, Y. Qiao, N. Murray, D. Devine. “Digital Twin: origin to future”. Applied System Innovation, 4, 2 (2021). [CrossRef] [Google Scholar]
  28. I. Errandonea, S. Beltrán, S. Arrizabalaga. “Digital Twin for maintenance: A literature review”. Computers in Industry, 123 (2020). [Google Scholar]
  29. C. Semeraro, M. Lezoche, H. Panetto, M. Dassist. “Digital twin paradigm: A systematic literature review”. Computers in Industry, 130 (2021). [Google Scholar]
  30. J. Xia, G. Zou. “Operation and maintenance optimization of offshore wind farms based on digital twin: A review”. Ocean Engineering, 268 (2023). [Google Scholar]
  31. AMRC. “Untangling the requirements of a Digital Twin” (2020) https://www.amrc.co.uk/files/document/404/1604658922_AMRC_Digital_Twin_AW.pdf. [Google Scholar]
  32. Y. Wang, R. Zou, F. Liu, L. Zhang, Q. Liu. “A review of wind speed and wind power forecasting with deep neural networks”. Applied Energy, 304 (2021). [Google Scholar]
  33. F. C. Mehlan, E. Pedersen, A. R. Nejad. “Modelling of wind turbine gear stages for Digital Twin and realtime virtual sensing using bond graphs”. J. Phys.: Conf. Ser., 2265 (2022). [Google Scholar]
  34. M. Wang, C. Wang, A. Hnydiuk-Stefan, S. Feng, I. Atilla, Z. Li. “Recent progress on reliability analysis of offshore wind turbine support structures considering digital twin solutions”. Ocean Engineering, 232 (2021). [Google Scholar]
  35. K. Sivalingam, M. Sepulveda, M. Spring, P. Davies. “A Review and Methodology Development for Remaining Useful Life Prediction of Offshore Fixed and Floating Wind turbine Power Converter with Digital Twin Technology Perspective”. IEE Explore. 2018 2nd International Conference on Green Energy and Applications (2018). [Google Scholar]
  36. C. Kim, M-C Dinh, H-J. Sung, K-H. Kim, J-H Choi, L, G. I-K, Yu. M. Park. “Design, implementation, and evaluation of an output prediction model of the 10 MW floating offshore wind turbine for a Digital Twin. Energies, 15, 17. [Google Scholar]
  37. C. Plumley. “Kelmarsh wind farm data”. Zenodo (2022) https://zenodo.org/record/5841834. [Google Scholar]
  38. OpenWeather. OpenWeather – Weather forecasts, nowcasts and history in a fast and elegant way”. OpenWeather (2023) https://openweathermap.org/. [Google Scholar]
  39. O. Eyecioglu, B. Hangun, K. Kayisli, M. Yesilbudak. Performance comparison of different machine learning algorithms on the prediction of wind Turbine power generation”. IEE. 2019 8th International Conference on Renewable Energy Research and Applications (2019). [Google Scholar]
  40. S. Tajmouati, B. El Wahbi, A. Bedoui, A. Abarda, M. Dakkoun. “Applying k-nearest neighbors to time series forecasting : two new approaches”. arXiv.2103.14200. [Google Scholar]
  41. M. Yesilbudak, S. Sagiroglu, I. Colak. “A new approach to very short term wind speed prediction using k-nearest neighbor classification”. Energy Conversion and Management, 69, 77-86 (2013). [CrossRef] [Google Scholar]
  42. U. Singh, M. Rizwan, M. Alaraj, I. Alsaidan. “A machine learning-based gradient boosting regression approach for wind power production forecasting: A step towards smart grid environments”. Energies, 14, 16 (2021). [Google Scholar]
  43. R. Becker and D. Thrän, “Completion of wind turbine data sets for wind integration studies applying random forests and k-nearest neighbors, ” Applied Energy, 208, 252-262 (2017). [CrossRef] [Google Scholar]
  44. K. Chomboon, P. Chujai, P. Teerarassamee, K. Kerdprasop, N. Kerdprasop. “Completion of wind turbine data sets for wind integration studies applying random forests and k-nearest neighbors”. Proceedings of the 3rd international conference on industrial application engineering (2015). [Google Scholar]
  45. SciPy. “Distance computations” (2023) https://docs.scipy.org/doc/scipy/reference/spatial.distance.html. [Google Scholar]
  46. C. Jung, D. Schindler. International Journal of Energy Research, 45, 6. [Google Scholar]
  47. Nvidia. “XGBoost”. Nvidia (2023) https://www.nvidia.com/en-us/glossary/data-science/xgboost/. [Google Scholar]
  48. Open Weather. “One Call API 3.0”. OpenWeather. (2023) https://openweathermap.org/api/one-call-3. [Google Scholar]
  49. OpenWeather. “Create New History Bulk”. OpenWeather. (2023) https://home.openweathermap.org/history_bulks/new. [Google Scholar]
  50. Microsoft. “Learn about twin models and how to define them in Azure Digital Twins”. Microsoft (2023) https://learn.microsoft.com/en-us/azure/digital-twins/concepts-models. [Google Scholar]
  51. Microsoft. “Tutorial: Coding with the Azure Digital Twins SDK”. Microsoft (2023) https://learn.microsoft.com/en-us/azure/digital-twins/tutorial-code. [Google Scholar]
  52. LazaUK “IndustrySolutions-WindFarm/3D_Mode ls”. Github (2023) https://github.com/LazaUK/IndustrySolutions-WindFarm/tree/main/3D_Models. [Google Scholar]
  53. Microsoft. “Ingest IoT Hub telemetry into Azure Digital Twins”. Microsoft (2023) https://learn.microsoft.com/en-us/azure/digital-twins/how-to-ingest-iot-hub-data. [Google Scholar]
  54. M. Santhosh, C. Venkaiah, D. M. Vinod Kumar. “Current advances and approaches in wind speed and wind power forecasting for improved renewable energy integration: A review”. Engineering Reports, 2, 6 (2020). [CrossRef] [Google Scholar]
  55. T. Chai R. R. Draxler. “Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature”. Geosci. Model Dev., 7, 3, 1247-1250 (2014). [CrossRef] [Google Scholar]
  56. Meteoblue. Weather API+”. Meteoblue (2023) https://www.meteoblue.com/en/weather-api. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.