Open Access
Issue
E3S Web Conf.
Volume 434, 2023
4th International Conference on Energetics, Civil and Agricultural Engineering (ICECAE 2023)
Article Number 02020
Number of page(s) 6
Section Civil Engineering
DOI https://doi.org/10.1051/e3sconf/202343402020
Published online 12 October 2023
  1. A. Rochim, D. Iranata, B. Piscesa, and N. A. Refani, “Analisa Tidak Linier Mekanisme Keruntuhan Jembatan Busur Rangka Baja (A-Half Through Arch),” J. Apl. Tek. Sipil, vol. 17, no. 1, p. 19, 2019, doi: 10.12962/j2579- 891x.v17i1.4764. [Google Scholar]
  2. A. Fatah, U. Ungkawa, M. M. Barmawi, J. T. Informatika, F. T. Industri, and F. Alami, “Implementasi Algoritma Fast Fourier Transform Pada Monitor Getaran Untuk Análisis Kesehatan,” vol. 5, no. 2, pp. 48–57, 2020, doi: 10.32897/infotronik.2020.5.2.414. [Google Scholar]
  3. L. Deng, D. Ph, M. Asce, W. Wang, and Y. Yu, “State-of-The-Art Review on the Causes and Mechanisms of Bridge Collapse State-of-the-Art Review on the Causes and Mechanisms of Bridge Collapse,” no. April 2019, 2015, doi: 10.1061/(ASCE)CF.1943-5509.0000731. [Google Scholar]
  4. A. Astaneh-Asl, “Progressice collapse of steel truss bridges, the case of I-35W collapse,” 7th Int. Conf. Steel Bridg., pp. 1–10, 2008. [Google Scholar]
  5. S. S. Jorfi and F. A. Gandomkar, “Investigation Progressive Collapse of K-Model Steel Truss Bridge under Additional Live Load Following Bridge Repairs,” vol. 6, no. 2, pp. 191–204, 2022, doi: 10.22060/ajce.2022.20830.5781. [Google Scholar]
  6. E. Yamaguchi, R. Okamoto, and K. Yamada, “Post-Member-Failure Analysis Method of Steel Truss,” Procedia Eng., vol. 14, pp. 656–661, 2011, doi: 10.1016/j.proeng.2011.07.083. [CrossRef] [Google Scholar]
  7. H. S. Birajdar, P. R. Maiti, and P. K. Singh, “Failure of Chauras bridge,” Eng. Fail. Anal., vol. 45, pp. 339–346, 2014, doi: 10.1016/j.engfailanal.2014.06.015. [CrossRef] [Google Scholar]
  8. Purnomo, W.A.N. Aspar, W. Barasa, S.M. Harjono, P. Sukamdo, and T. Fiantika, “Initial Implementation of Structural Health Monitoring System of a Railway Bridge,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1200, no. 1, p. 012019, 2021, doi: 10.1088/1757-899x/1200/1/012019. [CrossRef] [Google Scholar]
  9. L. Bernardini and M. Carnevale, “Applied sciences Damage Identification in Warren Truss Bridges by Two Different Time - Frequency Algorithms,” 2021. [Google Scholar]
  10. P. Suprobo, Faimun, and A. Febry, “Infrastructure Health Monitoring System ( SHM ) Development, a Necessity for Maintenance and Investigation,” vol. 1, no. 3, pp. 1–4, 2013. [Google Scholar]
  11. C. R. Farrar and K. Worden, “An introduction to structural health monitoring,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., vol. 365, no. 1851, pp. 303–315, 2007, doi: 10.1098/rsta.2006.1928. [CrossRef] [PubMed] [Google Scholar]
  12. J. Kuckartz and P. Collier, “A User-Centric Approach to the Design of Structural Health Monitoring Systems,” 2011. [Google Scholar]
  13. C. Comisu, N. Taranu, G. Boaca, and M. Scutaru, “ScienceDirect ScienceDirect ScienceDirect Structural health health monitoring monitoring system system of of bridges bridges Structural,” Procedia Eng., vol. 199, pp. 2054–2059, 2017, doi: 10.1016/j.proeng.2017.09.472. [CrossRef] [Google Scholar]
  14. A. Malekloo, E. Ozer, M. Alhamaydeh, and M. Girolami, Machine learning and structural health monitoring overview with emerging technology and high-dimensional data source highlights, vol. 0, no. 0. 2021. doi: 10.1177/14759217211036880. [Google Scholar]
  15. P. Moradipour, T. H. T. Chan, and C. Gallage, “Benchmark Studies for Bridge Health Monitoring Using an Improved Modal Strain Energy Method,” Procedia Eng., vol. 188, pp. 194–200, 2017, doi: 10.1016/j.proeng.2017.04.474. [CrossRef] [Google Scholar]
  16. W. Fan and P. Qiao, “Vibration-based damage identification methods: A review and comparative study,” Struct. Heal. Monit., vol. 10, no. 1, pp. 83–111, 2011, doi: 10.1177/1475921710365419. [CrossRef] [Google Scholar]
  17. O. Avci, O. Abdeljaber, S. Kiranyaz, M. Hussein, M. Gabbouj, and D. J. Inman, “A review of vibration-based damage detection in civil structures: From traditional methods to Machine Learning and Deep Learning applications,” Mech. Syst. Signal Process., vol. 147, 2021, doi: 10.1016/j.ymssp.2020.107077. [CrossRef] [Google Scholar]
  18. X. Lei, L. Sun, Y. Xia, and T. He, “Vibration-based seismic damage states evaluation for regional concrete beam bridges using random forest method,” Sustain., vol. 12, no. 12, 2020, doi: 10.3390/su12125106. [Google Scholar]
  19. A. Furukawa and J. Kiyono, “Identification Of Structural Damage Based On Vibration Responses,” no. 132, 2004. [Google Scholar]
  20. Z. Zhou, L. D. Wegner, and B. F. Sparling, “Structural Health Monitoring of Precast Concrete Box Girders Using Selected Vibration-Based Damage Detection Methods,” vol. 2010, 2010, doi: 10.1155/2010/280685. [Google Scholar]
  21. K. Chang and C. Kim, “Modal-parameter identification and vibration-based damage detection of a damaged steel truss bridge,” Eng. Struct., vol. 122, pp. 156–173, 2016, doi: 10.1016/j.engstruct.2016.04.057. [CrossRef] [Google Scholar]
  22. F. Omar et al., “Global methodology for damage detection and localization in civil engineering structures,” Eng. Struct., vol. 171, pp. 686–695, 2018, doi: 10.1016/j.engstruct.2018.06.026. [CrossRef] [Google Scholar]
  23. S. Rucevskis and M. Wesolowski, “Identification of damage in a beam structure by using mode shape curvature squares,” Shock Vib., vol. 17, no. 4-5, pp. 601–610, 2010, doi: 10.3233/SAV-2010-0551. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.