Open Access
Issue
E3S Web Conf.
Volume 437, 2023
The 5th International Conference on Green Environmental Engineering and Technology (IConGEET2023)
Article Number 03001
Number of page(s) 9
Section Environmental Sustainability and Development
DOI https://doi.org/10.1051/e3sconf/202343703001
Published online 16 October 2023
  1. W. Zhao, H. Yang, S. He, Q. Zhao, L. Wei, Bioresour Technol, A review of biochar in anaerobic digestion to improve biogas production: Performances, mechanisms and economic assessments, 341, 125797, (2021) [Google Scholar]
  2. Z. B. Khalid, M. N. I. Siddique, A. Nayeem, T. M. Adyel, S. B. Ismail, M. Z. Ibrahim, J Environ Chem Eng, Biochar application as sustainable precursors for enhanced anaerobic digestion: A systematic review (4), 9, (2021) [Google Scholar]
  3. M. Indren, C. H. Birzer, S. P. Kidd, T. Hall, P. R. Medwell, Biomass Bioenergy, Effect of wood biochar dosage and re-use on high-solids anaerobic digestion of chicken litter, 144, (2021) [Google Scholar]
  4. W. Wei, W. Guo, H. H. Ngo, G. Mannina, D. Wang, X. Chen, et al., Bioresour Technol, Enhanced high-quality biomethane production from anaerobic digestion of primary sludge by corn stover biochar, 306, 123159, (2020) [Google Scholar]
  5. O. S. Nille, A. S. Patil, R. D. Waghmare, V. M. Naik, D. B. Gunjal, G. B. Kolekar, et al. Chapter 11 Valorization of tea waste for multifaceted applications: a step toward green and sustainable development. In: Bhat R, Valorization of Agri-Food Wastes and ByProducts, Academic Press, 2021, 219-236, (2021) [CrossRef] [Google Scholar]
  6. D. Kalantzis, I. Daskaloudis, T. Lacoere, A. S. Stasinakis, D. F. Lekkas, J. De Vrieze, et al., Bioresour Technol, Granular activated carbon stimulates biogas production in pilotscale anaerobic digester treating agro-industrial wastewater, 376, 128908, (2023) [Google Scholar]
  7. P. R. Yaashikaa, P. S. Kumar, S. Varjani, A. Saravanan, Biotechnol Rep, A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy, 28, e00570, (2020) [Google Scholar]
  8. A. Tomczyk, Z. Sokołowska, P. Boguta, Rev Environ Sci Bio/Technol, Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects (1), 19, 191-215, (2020) [Google Scholar]
  9. M. Ahmad, S. S. Lee, X. Dou, D. Mohan, J.-K. Sung, J. E. Yang, et al., Bioresour Technol, Effects of pyrolysis temperature on soybean stoverand peanut shell-derived biochar properties and TCE adsorption in water, 118, 536-544, (2012) [Google Scholar]
  10. K. B. Cantrell, P. G. Hunt, M. Uchimiya, J. M. Novak, K. S. Ro, Bioresour Technol, Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar, 107, 419-428, (2012) [Google Scholar]
  11. H. Liu, X. Wang, Y. Fang, W. Lai, S. Xu, E. Lichtfouse, Renewable Energy, Enhancing thermophilic anaerobic co-digestion of sewage sludge and food waste with biogas residue biochar, 188, 465-475, (2022) [Google Scholar]
  12. A. R. Salehiyoun, H. Zilouei, M. Safari, F. Di Maria, S. H. Samadi, O. Norouzi, Renewable Energy, An investigation for improving dry anaerobic digestion of municipal solid wastes by adding biochar derived from gasification of wood pellets, 186, 1-9, (2022) [Google Scholar]
  13. M. Kończak, P. Oleszczuk, K. Różyło, J CO2 Util, Application of different carrying gases and ratio between sewage sludge and willow for engineered (smart) biochar production, 29, 20-28, (2019) [Google Scholar]
  14. Z. Liu, M. Jia, Q. Li, S. Lu, D. Zhou, L. Feng, et al., Ind Crops Prod, Comparative analysis of the properties of biochars produced from different pecan feedstocks and pyrolysis temperatures, 197, 116638, (2023) [Google Scholar]
  15. C. Nzediegwu, M. Arshad, A. Ulah, M. A. Naeth, S. X. Chang, Bioresour Technol, Fuel, thermal and surface properties of microwave-pyrolyzed biochars depend on feedstock type and pyrolysis temperature, 320, 124282, (2021) [Google Scholar]
  16. D. Angın, Bioresour Technol, Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake, 128, 593-597, (2013) [Google Scholar]
  17. R. B. Fidel, D. A. Laird, M. L. Thompson, M. Lawrinenko, Chemosphere, Characterization and quantification of biochar alkalinity, 167, 367-373, (2017) [Google Scholar]
  18. J.-T. He, N. Yao, Z.-Y. Sun, F. Li, H.-Q. Cai, L.-F. Jin, et al., Ind Crops Prod, Improved biogas production from tobacco processing waste via biocharassisted thermophilic anaerobic digestion, 202, 117038, (2023) [Google Scholar]
  19. R. Chatterjee, B. Sajjadi, W.-Y. Chen, D. L. Mattern, N. Hammer, V. Raman, et al., Front Energy Res, Effect of Pyrolysis Temperature on PhysicoChemical Properties and Acoustic-Based Amination of Biochar for Efficient CO2 Adsorption, 8, (2020) [Google Scholar]
  20. H. Tan, C. T. Lee, P. Y. Ong, K. Y. Wong, C. P. C. Bong, C. Li, et al., IOP Conference Series: Materials Science and Engineering, A Review On The Comparison Between Slow Pyrolysis And Fast Pyrolysis On The Quality Of Lignocellulosic And LigninBased Biochar (1), 1051, 012075, (2021) [Google Scholar]
  21. N. Abdullah, R. Mohd Taib, N. S. Mohamad Aziz, M. R. Omar, N. Md Disa, Heliyon, Banana pseudo-stem biochar derived from slow and fast pyrolysis process (1), 9, e12940, (2023) [Google Scholar]
  22. B. Jiang, Y. Lin, Y. Lun, Z. Xu, Int J Environ Sci Technol, Optimization of methane production in a swine manure–rice straw anaerobic co-digestion process with sycamore sawdust biochar application (8), 18, 2197-2208, (2020) [Google Scholar]
  23. C. Sun, F. Liu, Z. Song, J. Wang, Y. Li, Y. Pan, et al., Bioresour Technol, Feasibility of dry anaerobic digestion of beer lees for methane production and biochar enhanced performance at mesophilic and thermophilic temperature, 276, 65-73, (2019) [Google Scholar]
  24. J. Ma, J. Pan, L. Qiu, Q. Wang, Z. Zhang, Bioresour Technol, Biochar triggering multipath methanogenesis and subdued propionic acid accumulation during semicontinuous anaerobic digestion, 293, 122026, (2019) [Google Scholar]
  25. R. Shen, Y. Jing, J. Feng, L. Zhao, Z. Yao, J. Yu, et al., Bioresour Technol, Simultaneous carbon dioxide reduction and enhancement of methane production in biogas via anaerobic digestion of cornstalk in continuous stirred-tank reactors: The influences of biochar, environmental parameters, and microorganisms, 319, 124146, (2021) [Google Scholar]
  26. Y. Xin, W. Liu, C. Chen, D. Wang, BioResources, Effect of biochar on methane production and structural characteristics in the anaerobic digestion (AD) of rape straw (4), 17, 5632-5644, (2022) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.