Open Access
Issue |
E3S Web Conf.
Volume 439, 2023
2023 8th International Conference on Ecological Building and Green Building Material (EBGBM 2023)
|
|
---|---|---|
Article Number | 02008 | |
Number of page(s) | 14 | |
Section | Green Building Material and Material Property Research | |
DOI | https://doi.org/10.1051/e3sconf/202343902008 | |
Published online | 27 October 2023 |
- Sofuoglu H., Cam S. (2021) Coupled effect of thickness optimization and plastic forming history on crashworthiness performance of thin-walled square tube. NT J ADV MANUF TECH. 117(9-10): 2935–2948. [CrossRef] [Google Scholar]
- Tran T. (2020) Study on the crashworthiness of windowed multi-cell square tubes under axial and oblique impact. THIN WALL STRUCT. 155. [Google Scholar]
- Mohsenizadeh S., Ahmad Z., Alias A. (2020) Numerical Prediction on the Crashworthiness of Circular and Square Thin-Walled Tubes with Polymeric Auxetic Foam Core. JOURNAL OF J MATER ENG PERFORM. 29(5): 3092–3106. [CrossRef] [Google Scholar]
- Han J., Yamazaki K. (2003) Crashworthiness optimization of S-shape square tubes. INT J VEHICLE DES. 31(1): 72–85. [CrossRef] [Google Scholar]
- Guillow S., Lu G., Grzebieta R. (2001) Quasi-static axial compression of thin-walled circular aluminium tubes. INT J APPL MECH. 43(9): 2103–2123. [Google Scholar]
- Xiang Y., Wang M., Yu T. et al. (2015) Key performance indicators of tubes and foam-filled tubes used as energy absorbers. INT J APPL MECH. 7(04): 1550060. [CrossRef] [Google Scholar]
- Song Z., Ming S., Li T. et al. (2021) Improving the energy absorption capacity of square CFRP tubes with cutout by introducing chamfer. INT J MECH SCI. 1, 189. [Google Scholar]
- Bodlani S., Yuen S.C.K., Nurick G. (2009) The energy absorption characteristics of square mild steel tubes with multiple induced circular hole discontinuities—part I: experiments. [Google Scholar]
- Pratama A.A., Prabowo A.R., Muttaqie T. et al. (2023) Hollow tube structures subjected to compressive loading: implementation of the pitting corrosion effect in nonlinear FE analysis. J BRAZ SOC MECH SCI. 45(3). [Google Scholar]
- Xu P., Wang D., Yao S. et al. (2021) Multi-objective uncertain optimization with an ellipsoid-based model of a centrally symmetrical square tube with diaphragms for subways. STRUCT MULTIDISCIP O. 64(4): 2789–2804. [CrossRef] [Google Scholar]
- Abdullahi H.S., Gao S. (2021) A two-stage approach to the optimization design of multi-cell square tubal structures. STRUCT MULTIDISCIP O. 63(2): 897–913. [CrossRef] [Google Scholar]
- Li Z., Rakheja S., Shangguan W.-B. (2020) Crushing behavior and crashworthiness optimization of multicell square tubes under multiple loading angles. P I MECH ENG D-J AUT. 234(5): 1497–1511. [CrossRef] [Google Scholar]
- Abramowicz W., Jones N. (1984) Dynamic axial crushing of square tubes. INT J IMPaCt ENG. 2(2): 179–208. [CrossRef] [Google Scholar]
- Wierzbicki T., Abramowicz W. (1983) On the crushing mechanics of thin-walled structures. [Google Scholar]
- Menouer A., Baleh R., Djebbar A. et al. (2014) New generation of energy dissipating systems based on biaxial buckling. THIN WALL STRUCT. 85: 456–465. [CrossRef] [Google Scholar]
- Abramowicz W. (1983) The effective crushing distance in axially compressed thin-walled metal columns. INT J IMPACT ENG. 1(3): 309–317. [CrossRef] [Google Scholar]
- Abramowicz W. (1997) The macro element approach in crash calculations. Crashworthiness of transportation systems: structural impact and occupant protection. 332: 291–320. [CrossRef] [Google Scholar]
- Abramowicz W. (2003) Thin-walled structures as impact energy absorbers. THIN WALL STRUCT. 41(2-3): 91–107. [CrossRef] [Google Scholar]
- Mahmoudabadi M.Z., Sadighi M. (2011) A theoretical and experimental study on metal hexagonal honeycomb crushing under quasi-static and low velocity impact loading. MET SCI ENG A. 528(15): 4958–4966. [CrossRef] [Google Scholar]
- Malekshahi A., Shirazi K., Shishehsaz M. (2019) Axial crushing of prismatic multi-corner metal columns considering plastic hardening and curvature. J MECH. 35(3): 315–326. [CrossRef] [Google Scholar]
- Bhutada S., Goel M.D. (2021) Crashworthiness parameters and their improvement using tubes as an energy absorbing structure: an overview. INT J CRASHWORTHINES [Google Scholar]
- Patel V., Tiwari G., Dumpala R. (2020) Review of the crushing response of collapsible tubular structures. FRONTIERS OF MECH ENG. 15(3): 438–474. [CrossRef] [Google Scholar]
- TrongNhan T., Hou S., Han X. et al. (2014) Theoretical prediction and crashworthiness optimization of multi-cell square tubes under oblique impact loading. INT J MECH SCI. 89: 177–193. [CrossRef] [Google Scholar]
- TrongNhan T., Hou S., Han X. et al. (2015) Crushing analysis and numerical optimization of angle element structures under axial impact loading. COMPOS STRUCT, 2015, 119: 422–435. [CrossRef] [Google Scholar]
- Wu Y., Fang J., Cheng Z. et al. (2020) Crashworthiness of tailored-property multi-cell tubular structures under axial crushing and lateral bending. THIN WALL STRUCT. 149: 106640. [CrossRef] [Google Scholar]
- Li Z., Ma W., Xu P. et al. (2019) Crushing behavior of circumferentially corrugated square tube with different cross inner ribs. THIN WALL STRUCT. 144. [Google Scholar]
- Ferdynus M., Kotełko M., Urbaniak M. (2019) Crashworthiness performance of thin-walled prismatic tubes with corner dents under axial impact-Numerical and experimental study. THIN WALL STRUCT. 144: 106239. [CrossRef] [Google Scholar]
- Nia A.A., Attar A.A. (2017) The effect of different layouts in internal and external stiffeners on the energy absorption of thin-walled structures with square sections. ARCH CIV MECH ENG 17(4): 997–1010. [CrossRef] [Google Scholar]
- Wang G., Zhang Y., Zheng Z. et al. (2022) Crashworthiness design and impact tests of aluminum foam-filled crash boxes. THIN WALL STRUCT. 180. [Google Scholar]
- Rogala M., Ferdynus M., Gawdzinska K. et al. (2021) The Influence of Different Length Aluminum Foam Filling on Mechanical Behavior of a Square Thin-Walled Column. MATERIALS. 14(13). [Google Scholar]
- Yang X., An T., Wu Z. et al. (2020) The effect of outer tube on quasi-static compression behavior of aluminum foam -filled tubes. COMPOS STRUCT. 245. [Google Scholar]
- Seitzberger M., Rammerstorfer F.G., Gradinger R. et al. (2000) Experimental studies on the quasi-static axial crushing of steel columns filled with aluminium foam. INT J SOLIDS STRUCT. 37(30): 4125–4147. [CrossRef] [Google Scholar]
- Hussein R.D., Ruan D., Lu G. et al. (2017) Crushing response of square aluminium tubes filled with polyurethane foam and aluminium honeycomb. THIN WALL STRUCT. 110: 140–154. [CrossRef] [Google Scholar]
- Wang Z., Yao S., Lu Z. et al. (2016) Matching effect of honeycomb-filled thin-walled square tube-Experiment and simulation. COMPOS STRUCT. 157: 494–505. [CrossRef] [Google Scholar]
- Hussein R.D., Ruan D., Lu G. et al. (2016) Axial crushing behaviour of honeycomb-filled square carbon fibre reinforced plastic (CFRP) tubes. COMPOS STRUCT. 140: 166–179. [CrossRef] [Google Scholar]
- Yin H., Wen G., Hou S. et al. (2011) Crushing analysis and multiobjective crashworthiness optimization of honeycomb-filled single and bitubular polygonal tubes. MATER DESIGN. 32(8-9): 4449–4460. [CrossRef] [Google Scholar]
- Ma F., Liang H., Pu Y. et al. (2022) Crashworthiness analysis and multi-objective optimization for honeycomb structures under oblique impact loading. INT J CRASHWORTHINES. 27(4): 1128–1139. [CrossRef] [Google Scholar]
- Zhang Z., Liu S., Tang Z. (2011) Comparisons of honeycomb sandwich and foam-filled cylindrical columns under axial crushing loads. THIN WALL STRUCT. 49(9): 1071–1079. [CrossRef] [Google Scholar]
- Impson J., Kazanc Z. (2020) Crushing investigation of crash boxes filled with honeycomb and re-entrant (auxetic) lattices. THIN WALL STRUCT. 150. [Google Scholar]
- Sun G., Pang T., Xu C. et al. (2021) Energy absorption mechanics for variable thickness thinwalled structures. THIN WALL STRUCT. 118: 214–228. [Google Scholar]
- Zhou J., Qin R., Chen B. (2019) Energy absorption properties of multi-cell thin-walled tubes with a double surface gradient. THIN WALL STRUCT. 145. [Google Scholar]
- Zhou J., Qin R., Chen B. (2019) On the Folding Mechanics of Square Columns with Double-Surfaced Gradients. MATH PROBL ENG. [Google Scholar]
- Zhou J., Dong C., Wang Z. et al. (2022) Approaching ideal energy absorption through the multicellular structure with gradient material distribution. INT J MECH SCI. 225. [Google Scholar]
- Langseth M., Hopperstad O. (1997) Local buckling of square thin-walled aluminium extrusions. THIN WALL STRUCT. 27(1): 117–126. [CrossRef] [Google Scholar]
- Molotnikov V., Molotnikova A., Molotnikov V. et al. (2021) Plasticity Theory of Henky-Nadai-Ilyushin. Theory of Elasticity and Plasticity: A Textbook of Solid Body Mechanics. 195–217. [CrossRef] [Google Scholar]
- Firat M. (2008) An analysis of sheet drawing characteristics with drawbead elements. COMP MATER SCI 41(3): 266–274. [CrossRef] [Google Scholar]
- Gotoh M. (1998) A numerical study of various plastically unstable behaviors in tension and compression. MATER MET. 4: 628–639. [CrossRef] [Google Scholar]
- Stowell E.Z. (1984) A unified theory of plastic buckling of columns and plates. [Google Scholar]
- Stowell E.Z. (1950) Compressive strength of flanges. National Advisory Committee for Aeronautics. [Google Scholar]
- Piluso V., Pisapia A. (2021) Interactive plastic local buckling of box-shaped aluminium members under uniform compression. THIN WALL STRUCT. 164: 107828. [CrossRef] [Google Scholar]
- Draft BS EN1999-1-1. (2021) Eurocode 9: Design of aluminium structures - Part 1-1: General structural rules. European Committee for Standardization. [Google Scholar]
- Chen S., Fang H., Liu J.-Z. et al. (2022) Design for local buckling behaviour of welded high strength steel I-sections under bending. THIN WALL STRUCT. 172: 108792. [CrossRef] [Google Scholar]
- Liu J.-Z., Fang H., Chan T.-M. (2023) Numerical investigation on local buckling behaviour of cold- formed high strength steel irregular hexagonal hollow section stub columns. THIN WALL STRUCT. 185: 110571. [CrossRef] [Google Scholar]
- Garai F., Beres G., Weltsch Z. (2020) Development of tubes filled with aluminium foams for lightweight vehicle manufacturing. MAT SCI ENG A- STRUCT790. [Google Scholar]
- Baroutaji A., Sajjia M., Olabi A.-G. (2017) On the crashworthiness performance of thin-walled energy absorbers: Recent advances and future developments. THIN WALL STRUCT. 118: 137–163. [CrossRef] [Google Scholar]
- Chen G., Huang H., Xiang Z. (2022) Study on the Anticollision Performance of a New Corrugated Steel Protection System for Bridge Pier. SHOCK VIB. [Google Scholar]
- Fan W., Shen D., Zhang Z. et al. (2020) A novel UHPFRC-based protective structure for bridge columns against vehicle collisions: Experiment, simulation, and optimization. ENG STRUCT. [Google Scholar]
- Jiang H., Chorzepa M.G. (2016) Case Study: Evaluation of a Floating Steel Fender System for Bridge Pier Protection against Vessel Collision. J BRIDGE ENG. 21(11). [Google Scholar]
- Chen G., Huang H., Xiang Z. (2022) Experiment and Simulation on the Anticollision Performance of a New Corrugated Steel Protection System for Bridge Piers. SHOCK VIB. [Google Scholar]
- Li Q.Q., Li E., Chen T. et al. (2021) Improve the frontal crashworthiness of vehicle through the design of front rail. THIN WALL STRUCT. 162. [Google Scholar]
- Pyrz M., Krzywoblocki M., (2022) Wolska N. Optimal crashworthiness design of vehicle S-frame using macro-element method and evolutionary algorithm. STRUCT MULTIDISCIP O. 65(3). [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.