Open Access
Issue
E3S Web Conf.
Volume 440, 2023
International Conference on Environment and Smart Society (ICEnSO 2023)
Article Number 07004
Number of page(s) 11
Section State of the Art Smart Environments
DOI https://doi.org/10.1051/e3sconf/202344007004
Published online 01 November 2023
  1. Business Wire, Transport Services Global Market Report 2022: Growth is Aided by Stable Economic Growth Forecasted in Many Developed and Developing Countries. (2022),from https://www.businesswire.com/news/home/20220811005584/en/Transport-Services-Global-Market-Report-2022-Growth-is-Aided-by-Stable-Economic-Growth-Forecasted-in-Many-Developed-and-Developing-CountriesResearchAndMarkets.com [Google Scholar]
  2. M. Gansterer, R. F. Hartl, Shared resources in collaborative vehicle routing, Top, 28, 1-20 (2020) [CrossRef] [Google Scholar]
  3. Z. Zhao, X. Li, X. Zhou, Distribution route optimization for electric vehicles in urban cold chain logistics for fresh products under time-varying traffic conditions, Math. Probl. Eng, 1-17, (2020) [Google Scholar]
  4. E. Demir, T. Bektaş, G. Laporte, An adaptive large neighborhood search heuristic for the pollution-routing problem, European J. Oper. Res., 223(2), 346-359 (2012). [CrossRef] [Google Scholar]
  5. K. Moonsri, K. Sethanan, C. Sangsawang, Metaheuristics for scheduling unrelated parallel machines with sequence-dependent setup time and machine eligibility, Chiang Mai Univ. J. Nat. Sci. Spec. Issue Logist. Supply Chain Syst., 14(4S), 431-446 (2015). [Google Scholar]
  6. K. Sethanan, R. Pitakaso. Differential evolution algorithms for scheduling raw milk transportation, Comput. Electron. Agric., 121, 245-259 (2016). [CrossRef] [Google Scholar]
  7. K. Moonsri, K. Sethanan, K. Worasan, K. Nitisiri. A hybrid and self-adaptive differential evolution algorithm for the multi-depot vehicle routing problem in egg distribution, Appl. Sci. 12(1), 35 (2021). [CrossRef] [Google Scholar]
  8. K. Moonsri, K. Sethanan, K. Worasan, A novel enhanced differential evolution algorithm for outbound logistics of the poultry industry in Thailand, J. Open Innov. Technol. Market Complex., 8(1), 15 (2022). [CrossRef] [Google Scholar]
  9. Ç. Koç, T. Bektaş, O. Jabali, G. Laporte, A hybrid evolutionary algorithm for heterogeneous fleet vehicle routing problems with time windows, Comput. Oper. Res. 64, 11-27 (2015). [CrossRef] [Google Scholar]
  10. D.S.W. Lai, O.C. Caliskan Demirag, J.M.Y. Leung, A tabu search heuristic for the heterogeneous vehicle routing problem on a multigraph, Transp, Res. Part E Logist. Transp. Rev. 86, 32-52 (2016). [CrossRef] [Google Scholar]
  11. W. Wu, Y. Tian, T. Jin, A label based ant colony algorithm for heterogeneous vehicle routing with mixed backhaul, Appl. Soft Comput., 47, 224-234 (2016). [CrossRef] [Google Scholar]
  12. Y. Meliani, Y. Hani, S.L. Elhaq, A. El Mhamedi. A developed Tabu Search algorithm for heterogeneous fleet vehicle routing problem, IFAC-PapersOnLine, 52(13), 1051-1056 (2019). [CrossRef] [Google Scholar]
  13. E. Queiroga, R. Sadykov, E. Uchoa, A POPMUSIC matheuristic for the capacitated vehicle routing problem, Comput. Oper. Res. 136, 105475 (2021). [CrossRef] [Google Scholar]
  14. F. Stavropoulou, The consistent vehicle routing problem with heterogeneous fleet, Comput. Oper. Res. 140, 105644 (2022). [CrossRef] [Google Scholar]
  15. M.S. Sarbijan, J. Behnamian, Multi-fleet feeder vehicle routing problem using hybrid metaheuristic, Comput. Oper. Res. 141, 105696 (2022). [CrossRef] [Google Scholar]
  16. V.R. Máximo, J.-F. Cordeau, M.C.V. Nascimento, An adaptive iterated local search heuristic for the Heterogeneous Fleet Vehicle Routing Problem, Comput. Oper. Res. 148, 105954 (2022). [CrossRef] [Google Scholar]
  17. S.N. Bezerra, M.J.F. Souza, S.R. de Souza, A variable neighborhood search-based algorithm with adaptive local search for the Vehicle Routing Problem with Time Windows and multi-depots aiming for vehicle fleet reduction, Comput. Oper. Res. 149, 106016 (2023). [CrossRef] [Google Scholar]
  18. R. Storn, K. Price, Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces, J. Global Optim. 11, 341-359 (1997). [CrossRef] [Google Scholar]
  19. K. Price, R.M. Storn, J.A. Lampinen, Differential evolution: a practical approach to global optimization, Springer Sci. Business Media, (2006) [Google Scholar]
  20. S.M. Elsayed, R.A. Sarker, D.L. Essam. Differential evolution with multiple strategies for solving CEC2011 real-world numerical optimization problems, (In: 2011 IEEE Congress of Evolutionary Computation (CEC), pp. 1041-1048. IEEE, 2011) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.