Open Access
Issue
E3S Web Conf.
Volume 441, 2023
2023 International Conference on Clean Energy and Low Carbon Technologies (CELCT 2023)
Article Number 02019
Number of page(s) 7
Section Pollution Control and Low-Carbon Energy Saving Development
DOI https://doi.org/10.1051/e3sconf/202344102019
Published online 07 November 2023
  1. Fatima Akram, Ikramul Haq, Saleha Ibadat Raja, Azka Shahzad Mir, Sumbal Sajid Qureshi, Amna Aqeel, Fatima Iftikhar Shah, Current trends in biodiesel production technologies and future progressions: A possible displacement of the petro-diesel, Journal of Cleaner Production, Volume 370, 2022. https://doi.org/10.1016/j.jclepro.2022.133479 [Google Scholar]
  2. Neupane, D.; Adhikari, P.; Bhattarai, D.; Rana, B.; Ahmed, Z.; Sharma, U.; Adhikari, D. Does Climate Change Affect the Yield of the Top Three Cereals and Food Security in the World? Earth, 2022, 3, 4571. https://doi.org/10.3390/earth3010004 [CrossRef] [Google Scholar]
  3. Mehmood, M.A.; Ibrahim, M.; Rashid, U.; Nawaz, M.; Ali, S.; Hussain, A.; Gull, M. Biomass production for bioenergy using marginal lands. Sustainable Production and Consumption, 2017, 9, 3–21. https://doi.org/10.1016/j.spc.2016.08.003 [CrossRef] [Google Scholar]
  4. Maheshwari, P.; BelalHaider, M.; Yusuf, M.; Klemeš, J.J.; Bokhari, A.; Beg, M.; Al-Othman, A.; Kumar, R.; Jaiswal, A.K. A review on latest trends in cleaner biodiesel production: Role of feedstock, production methods, and catalysts. Journal of Cleaner Production, 2022, 335, 131588. https://doi.org/10.1016/j.jclepro.2022.131588 [CrossRef] [Google Scholar]
  5. Singh, A.R.; Singh, S.K.; Jain, S. A review on bioenergy and biofuel production. Materials Today: Proceedings, 2022, 49, 510–516. https://doi.org/10.1016/j.matpr.2021.03.212 [CrossRef] [Google Scholar]
  6. Kumar, A., Singh, V.P., Nirala, A., Singh, R.C., Chaudhary, R., Mourad, A.H.I., Sahoo, B.K. and Kumar, D., Influence of tool rotational speed on mechanical and corrosion behaviour of friction stir processed AZ31/Al2O3 nanocomposite. Journal of Magnesium and Alloys, 2023 7(3), 487–500 https://doi.org/10.1016/j.jma.2023.06.012 [Google Scholar]
  7. Venugopal, V., Singh, V.P. and Kuriachen, B., Underwater friction stir welding of marine grade aluminium alloys: A review Materials Today: Proceedings, 2023 https://doi.org/10.1016/j.matpr.2023.07.182 [Google Scholar]
  8. Singh, V.P., Kumar, A., Kumar, R., Modi, A., Kumar, D., Mahesh, V. and Kuriachen, B., Effect of Rotational Speed on Mechanical, Microstructure, and Residual Stress Behaviour of AA6061-T6 Alloy Joints through Friction Stir Welding. Journal of Materials Engineering and Performance, 2023 pp.116. https://doi.org/10.1007/s11665-023-08527-8 [Google Scholar]
  9. Yusuf, M.; Beg, M.; Ubaidullah, M.; Shaikh, S.F.; Keong, L.K.; Hellgardt, K.; Abdullah, B. Kinetic studies for DRM over high-performance Ni- W/Al2O3-MgO catalyst. International Journal of Hydrogen Energy, 2021, 47, 42150–42159. https://doi.org/10.1016/j.ijhydene.2021.08.021 [Google Scholar]
  10. Deora, P.S.; Verma, Y.; Muhal, R.A.; Goswami, C.; Singh, T. Biofuels: An alternative to conventional fuel and energy source. Materials Today: Proceedings. 2022, 48, 1178–1184. https://doi.org/10.1016/j.matpr.2021.08.227 [CrossRef] [Google Scholar]
  11. Mat Aron, N.S.; Khoo, K.S.; Chew, K.W.; Show, P.L.; Chen, W.H.; Nguyen, T.H.P. Sustainability of the four generations of biofuels-a review. International Journal of Energy Research, 2020, 44, 9266–9282. https://doi.org/10.1002/er.5557 [CrossRef] [Google Scholar]
  12. Aransiola, E.F.; Ojumu, T.V.; Oyekola, O.; Madzimbamuto, T.; Ikhu-Omoregbe, D. A review of current technology for biodiesel production: State of the art. Biomass Bioenergy, 2014, 61, 276–297. https://doi.org/10.1016/j.biombioe.2013.11.014 [CrossRef] [Google Scholar]
  13. Mahapatra, S., Kumar, D., Singh, B. and Sachan, P.K., Biofuels and their sources of production: A review on cleaner sustainable alternative against conventional fuel, in the framework of the food and energy nexus. Energy Nexus, 2021, 4, p.100036. https://doi.org/10.1016/j.nexus.2021.100036 [CrossRef] [Google Scholar]
  14. Yadav, P.K., Dixit, G., Dixit, S., Singh, V.P., Patel, S.K., Purohit, R. and Kuriachen, B., Effect of eutectic silicon and silicon carbide particles on high stress scratching wear of aluminium composite for various testing parameters. Wear, 2021, 482, p.203921. https://doi.org/10.1016/j.wear.2021.203921 [CrossRef] [Google Scholar]
  15. T. Mizik, G. Gyarmati, Economic and sustainability of biodiesel production—a systematic literature review, Clean Technologies. 2021, 3 19–36. https://doi.org/10.3390/cleantechnol3010002 [CrossRef] [Google Scholar]
  16. Obergruber, M.; Hönig, V.; Procházka, P.; Ku’œrová, V.; Kotek, M.; Bou’cek, J.; Ma’rík, J. Physicochemical properties of biobutanol as an advanced biofuel. Materials, 2021, 14, 914. https://doi.org/10.3390/ma14040914 [CrossRef] [PubMed] [Google Scholar]
  17. Lynd, L.R.; Sow, M.; Chimphango, A.F.; Cortez, L.A.; Brito Cruz, C.H.; Elmissiry, M.; Laser, M.; Mayaki, I.A.; Moraes, M.A.; Nogueira, L.A. Bioenergy and African transformation. Biotechnology for Biofuels, 2015, 8, 1–18. https://doi.org/10.1186/s13068-014-0188-5 [CrossRef] [PubMed] [Google Scholar]
  18. Posten, C.; Schaub, G. Microalgae and terrestrial biomass as source for fuels—A process view. Journal of Biotechnology, 2009, 142, 64–69. https://doi.org/10.1016/j.jbiotec.2009.03.015 [CrossRef] [PubMed] [Google Scholar]
  19. Xu, H.; Wang, C. A. Comprehensive Review of 2, 5- Dimethylfuran as a Biofuel Candidate. Biofuels from Lignocellulosic Biomass: Innovations Beyond Bioethanol, 2016, 105–129. https://doi.org/10.1002/9783527685318.ch5 [CrossRef] [Google Scholar]
  20. Zhang, W.; He, J.; Engstrand, P.; Björkqvist, O. Economic evaluation on bio-synthetic natural gas production integrated in a thermomechanical pulp mill. Energies, 2015, 8, 12795–12809. https://doi.org/10.3390/en81112343 [CrossRef] [Google Scholar]
  21. Alaswad, A.; Dassisti, M.; Prescott, T.; Olabi, A.G. Technologies and developments of third generation biofuel production. Renewable and Sustainable Energy Reviews, 2015, 51, 1446–1460. https://doi.org/10.1016/j.rser.2015.07.058 [CrossRef] [Google Scholar]
  22. Godbole, V.; Pal, M.K.; Gautam, P. A critical perspective on the scope of interdisciplinary approaches used in fourth-generation biofuel production. Algal Research, 2021, 58, 102436. https://doi.org/10.1016/j.algal.2021.102436 [CrossRef] [Google Scholar]
  23. Abdullah, B.; Muhammad, S.A.F.A.S.; Shokravi, Z.; Ismail, S.; Kassim, K.A.; Mahmood, A.N.; Aziz, M.M.A. Fourth generation biofuel: A review on risks and mitigation strategies. Renewable and Sustainable Energy Reviews, 2019, 107, 37–50. https://doi.org/10.1016/j.rser.2019.02.018 [CrossRef] [Google Scholar]
  24. Lan, E.I.; Liao, J.C. Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide. Metabolic Engineering, 2011, 13, 353–363. https://doi.org/10.1016/j.ymben.2011.04.004 [CrossRef] [PubMed] [Google Scholar]
  25. Almeida J.R., Favaro L.C., Quirino B.F. Biodiesel biorefinery:opportunities and challenges for microbial production of fuels and chemicals from glycerol waste. Biotechnology for Biofuels, 2012;5:48. https://doi.org/10.1186/1754-6834-5-48 [CrossRef] [PubMed] [Google Scholar]
  26. Ghazali, Wan Nor Maawa Wan, Rizalman Mamat, Haji Hassan Masjuki, and Gholamhassan Najafi. “Effects of biodiesel from different feedstocks on engine performance and emissions: A review. Renewable and Sustainable Energy Reviews, 51 (2015): 585–602. https://doi.org/10.1016/j.rser.2015.06.031 [CrossRef] [Google Scholar]
  27. Atadashi, I. M., Mohamed Kheireddine Aroua, A.R. Abdul Aziz, and N.M.N. Sulaiman. “Production of biodiesel using high free fatty acid feedstocks. Renewable and Sustainable Energy Reviews, 16, 5 (2012): 3275–3285. https://doi.org/10.1016/j.rser.2012.02.063 [CrossRef] [Google Scholar]
  28. Pinzi, Sara, David Leiva, Isabel López-García, M. Dolores Redel-Macías, and M. Pilar Dorado. “Latest trends in feedstocks for biodiesel production.” Biofuels, Bioproducts and Biorefining, 2014, 8, 1, 126–143. https://doi.org/10.1002/bbb.1435 [CrossRef] [Google Scholar]
  29. No, Soo-Young. Inedible vegetable oils and their derivatives for alternative diesel fuels in CI engines: A review. Renewable and Sustainable Energy Reviews, 2011, 15, 1, 131–149. https://doi.org/10.1016/j.rser.2010.08.012 [CrossRef] [Google Scholar]
  30. Singh, V.P., Kumar, D. and Kuriachen, B., Effect of Low Welding and Rotational Speed on Microstructure and Mechanical Behaviour of Friction Stir Welded AZ31-AA6061-T6. Transactions of the Indian Institute of Metals, 2023, pp.1–9. https://doi.org/10.1007/s12666-023-02971-9 [Google Scholar]
  31. Kumar, A., Nirala, A., Singh, V.P., Sahoo, B.K., Singh, R.C., Chaudhary, R., Dewangan, A.K., Gaurav, G.K., Klemeš, J.J. and Liu, X., 2023. The utilisation of coconut shell ash in production of hybrid composite: Microstructural characterisation and performance analysis. Journal of Cleaner Production, 398, p.136494. https://doi.org/10.1016/j.jclepro.2023.136494 [CrossRef] [Google Scholar]
  32. Singh, V.P., Kumar, R., Kumar, A. and Dewangan, A.K., Automotive light weight multi-materials sheets joining through friction stir welding technique: an overview. Materials Today: Proceedings, 2023. https://doi.org/10.1016/j.matpr.2023.02.171 [Google Scholar]
  33. Kumar, R., Dwivedi, R.K., Singh, V.P., Kuriachen, B. and Krishnan, N.A., Influence of toughness and retained austenite on wear behaviour of carbide-free bainite in high silicon steel. Transactions of the Indian Institute of Metals, 2022, 76, 2425–2434. https://doi.org/10.1007/s12666-022-02818-9 [Google Scholar]
  34. Singh, V.P., Kumar, D., Mahto, R.P. and Kuriachen, B., Microstructural and Mechanical Behavior of Friction-Stir-Welded AA6061-T6 and AZ31 Alloys with Improved Electrochemical Corrosion. Journal of Materials Engineering and Performance, 2023, 32, 4185–4204. https://doi.org/10.1007/s11665-022-07380-5 [CrossRef] [Google Scholar]
  35. Selvaraj, R., R. Praveenkumar, and I. Ganesh Moorthy. “A comprehensive review of biodiesel production methods from various feedstocks. Biofuels 10, no. 3 (2019): 325–333. https://doi.org/10.1080/17597269.2016.1204584 [CrossRef] [Google Scholar]
  36. Wan Omar W.N.N., Saidina Amin N.A. Optimization of heterogeneous biodiesel production from waste cooking palmoil via response surface methodology. Biomass and Bioenergy, 2011;35:1329–1338. https://doi.org/10.1016/j.biombioe.2010.12.049 [CrossRef] [Google Scholar]
  37. Gui, Meei Mei, Keat Teong Lee, and Subhash Bhatia. Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock. Energy, 2008, 33.11 1646–1653. https://doi.org/10.1016/j.energy.2008.06.002 [CrossRef] [Google Scholar]
  38. Kumar, Niraj, and Sant Ram Chauhan. Performance and emission characteristics of biodiesel from different origins: A review. Renewable and Sustainable Energy Reviews, 2013, 21, 633–658. https://doi.org/10.1016/j.rser.2013.01.006 [CrossRef] [Google Scholar]
  39. Ahn E., Koncar M., Mittelbach M., Man R. A low- waste process for the production of biodiesel. Separation Science and Technology 1995;30:2021–2033. https://doi.org/10.1080/01496399508010391 [CrossRef] [Google Scholar]
  40. Cvengro J., Povaz A.F. Production and treatment of rapeseed oilmethyl esters as alternative fuels for diesel engines. Bioresource Technology 1996;55:145–150. https://doi.org/10.1016/0960-8524(95)00190-5 [CrossRef] [Google Scholar]
  41. Kaieda, Masaru, Taichi Samukawa, Takeshi Matsumoto, Kazuhiro Ban, Akihiko Kondo, Yuji Shimada, Hideo Noda et al. Biodiesel fuel production from plant oil catalyzed by Rhizopus oryzae lipase in a water-containing system without an organic solvent. Journal of bioscience and bioengineering, 1999, 88(6) 627–631. https://doi.org/10.1016/S1389-1723(00)87091-7 [CrossRef] [PubMed] [Google Scholar]
  42. Uosukainen E., Lamsa M., Linko Y., Linko P., Leisola M. Optimization of enzymatic transesterification of rapeseed oil ester using response surface and principal component methodology. Enzyme and Microbial Technology, 1999, 25, 236–243. https://doi.org/10.1016/S0141-0229(99)00034-4 [CrossRef] [Google Scholar]
  43. Ma Fangrui, Hanna Milford A. Biodiesel production: a review. Bioresource Technology, 1999; 70:1–15. https://doi.org/10.1016/S0960-8524(99)00025-5 [CrossRef] [Google Scholar]
  44. Samukawa Taichi, Kaieda Masaru, Matsumoto Takeshi, Ban Kazuhiro, Kondo Akihiko, Shimada Yuji, et al. Pretreatment of immobilized Candida Antarctica lipase for biodiesel fuel production from plant oil. Journal of Bioscience and Bioengineering, 2000;90:180–183. https://doi.org/10.1016/S1389-1723(00)80107-3 [CrossRef] [PubMed] [Google Scholar]
  45. Ikwuagwu O.E., Ononogbu I.C., Njoku O.U. Production of biodiesel using rubber [Heveabrasiliensis (KunthMuell.)] seed oil. Industrial Crops and Products 2000;12:57–62. https://doi.org/10.1016/S0926-6690(99)00068-0 [CrossRef] [Google Scholar]
  46. Crabbe Edward, Nolasco-Hipolito Cirilo, Kobayashi Genta, Sonomoto Kenji, Ishizaki Ayaaki. Biodiesel production from crude palm oil and evaluation of butanol extraction and fuel properties. Process Biochemistry 2001; 37:65–71. https://doi.org/10.1016/S0032-9592(01)00178-9 [CrossRef] [Google Scholar]
  47. Sharma, V., Das, L., Pradhan, R. C., Naik, S. N., Bhatnagar, N., & Kureel, R. S. Physical properties of tung seed: An industrial oil yielding crop. Industrial Crops and Products, 2011 33(2), 440–444 https://doi.org/10.1016/j.indcrop.2010.10.031 [CrossRef] [Google Scholar]
  48. Singh, Virendra Pratap, and Basil Kuriachen. Experimental investigations into the mechanical and metallurgical characteristics of friction stir welded AZ31 magnesium alloy. Journal of Materials Engineering and Performance 31, no. 12 (2022): 9812–9828. https://doi.org/10.1007/s11665-022-07055-1 [CrossRef] [Google Scholar]
  49. Ranjole, C., Singh, V.P., Kuriachen, B. and Vineesh, K.P., Numerical prediction and experimental investigation of temperature, residual stress and mechanical properties of dissimilar friction-stir welded AA5083 and AZ31 alloys. Arabian Journal for Science and Engineering, 2022, 47(12), pp.16103–16115. https://doi.org/10.1007/s13369-022-06808-3 [CrossRef] [Google Scholar]
  50. Singh, Virendra Pratap, Surendra Kumar Patel, and Basil Kuriachen. Mechanical and microstructural properties evolutions of various alloys welded through cooling assisted friction-stir welding: A review. Intermetallics 133 (2021): 107122. https://doi.org/10.1016/j.intermet.2021.107122 [CrossRef] [Google Scholar]
  51. Singh, V.P., Patel, S.K., Ranjan, A. and Kuriachen, B., Recent research progress in solid state frictionstir welding of aluminium-magnesium alloys: a critical review. Journal of Materials Research and Technology, 2020, 9(3), pp.6217–6256. https://doi.org/10.1016/j.jmrt.2020.01.008 [CrossRef] [Google Scholar]
  52. Kumar, A., Singh, R.C., Chaudhary, R. and Singh, V.P., April. Tribological studies and microstructural characterisation of SiC and fly ash particles based aluminium 2024 alloy composites prepared through stir casting route. In IOP Conference Series: Materials Science and Engineering, 2020, 804(1) p. 012025). IOP Publishing. https://doi.org/10.1088/1757-899X/804/1/012025 [CrossRef] [Google Scholar]
  53. Singh, V.P., Patel, S.K., Kuriachen, B. and Suman, S., 2019. Investigation of general welding defects found during friction-stir welding (FSW) of aluminium and its alloys. In Advances in Additive Manufacturing and Joining: Proceedings of AIMTDR 2018 (pp. 587–595). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-32-9433-2_51 [Google Scholar]
  54. Singh, V.P., Patel, S.K., Kumar, N. and Kuriachen, B., Parametric effect on dissimilar friction stir welded steel-magnesium alloys joints: a review. Science and Technology of Welding and Joining, 2019, 24(8), pp.653–684. https://doi.org/10.1080/13621718.2019.1567031 [CrossRef] [Google Scholar]
  55. Singh, D.; Sharma, D.; Soni, S.; Sharma, S.; Kumari, D. Chemical compositions, properties, and standardsfor different generation biodiesels: A review. Fuel, 2019, 253, 60–71. https://doi.org/10.1016/j.fuel.2019.04.174 [CrossRef] [Google Scholar]
  56. Neupane, D.; Bhattarai, D.; Ahmed, Z.; Das, B.; Pandey, S.; Solomon, J.K.Q.; Qin, R.; Adhikari, P. Growing Jatropha (Jatrophacurcas L.) as a Potential Second-Generation Biodiesel Feedstock. Inventions 2021, 6, 60. https://doi.org/10.3390/inventions6040060 [CrossRef] [Google Scholar]
  57. Patel, S.K., Singh, V.P., Roy, B.S. and Kuriachen, B., 2020. Recent research progresses in Al-7075 based in-situ surface composite fabrication through friction stir processing: A review. Materials Science and Engineering: B., 262, p.114708. https://doi.org/10.1016/j.mseb.2020.114708 [CrossRef] [Google Scholar]
  58. Patel, S.K., Singh, V.P. and Kuriachen, B., 2019. Friction stir processing of alloys with secondary phase particles: an overview. Materials and Manufacturing Processes, 34(13), pp.1429–1457. https://doi.org/10.1080/10426914.2019.1662037 [CrossRef] [Google Scholar]
  59. Patel, S.K., Singh, V.P., Kumar, N., Kuriachen, B. and Nateriya, R., 2020. Wear behaviour of Al-Silicon (LM13) alloy composite reinforcement with TiC and ZrSiO4 particles. Silicon, 12(1), pp.211–221. https://doi.org/10.1007/s12633-019-00114-8 [CrossRef] [Google Scholar]
  60. Patel, S.K., Singh, V.P. and Kuriachen, B., 2019. Microstructural, Tribological and mechanical properties evolution of ZrSiO4/A4047 surface composite fabricated through friction stir processing. Transactions of the Indian Institute of Metals, 72(7), pp.1765–1774. https://doi.org/10.1007/s12666-019-01647-7 [CrossRef] [Google Scholar]
  61. Patel, S.K., Singh, V.P., Kumar, D., Roy, B.S. and Kuriachen, B., 2022. Microstructural, mechanical and wear behavior of A7075 surface composite reinforced with WC nanoparticle through friction stir processing. Materials Science and Engineering: B., 276, p.115476. https://doi.org/10.1016/j.mseb.2021.115476 [CrossRef] [Google Scholar]
  62. Singh, A.K., Mishra, A.K., Gupta, K.K., Bhatnagar, P. and Kim, T., 2020. An integrated converter with reduced components for electric vehicles utilizing solar and grid power sources. IEEE Transactions on Transportation Electrification, 6(2), pp.439–452. https://doi.org/10.1109/TTE.2020.2998799 [CrossRef] [Google Scholar]
  63. Singh, N., Gupta, K.K., Jain, S.K., Dewangan, N.K. and Bhatnagar, P., 2020. A flying squirrel search optimization for MPPT under partial shaded photovoltaic system. IEEE Journal of Emerging and Selected Topics in Power Electronics, 9(4), pp.4963–4978. https://doi.org/10.1109/JESTPE.2020.3024719 [Google Scholar]
  64. Mahla, S.K., Goyal, T., Goyal, D., Sharma, H., Dhir, A. and Goga, G., 2022. Optimization of engine operating variables on performance and emissions characteristics of biogas fuelled CI engine by the design of experiments: Taguchi approach. Environmental Progress & Sustainable Energy, 41(2), p.e13736. https://doi.org/10.1002/ep.13736 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.