Open Access
Issue |
E3S Web Conf.
Volume 445, 2023
The 4th International Conference on Green Civil and Environmental Engineering (GCEE 2023)
|
|
---|---|---|
Article Number | 01033 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1051/e3sconf/202344501033 | |
Published online | 14 November 2023 |
- A. L. Rettob and R. S. Waremra, “POMPA AIR BERTENAGA ENERGI MATAHARI (SOLAR CELL) UNTUK PENGAIRAN SAWAH,” vol. 1, pp. 46–52 (2019) [Google Scholar]
- H. M. Ali, S. M. Reda, A. I. Ali, and M. A. Mousa, “A quick peek at solar cells and a closer insight at perovskite solar cells q,” Egypt. J. Pet., vol. 30, no. 4, pp. 53–63 (2021) [CrossRef] [Google Scholar]
- H. Assiddiq and I. Dinahkandy, “Studi pemanfaatan energi matahari sebagai sumber energi alternatif terbarukan berbasis sel fotovoltaik untuk mengatasi kebutuhan listrik rumah sederhana di daerah terpencil,” no. May (2020) [Google Scholar]
- T. Artiningrum et al., “MENINGKATKAN PERAN ENERGI BERSIH LEWAT PEMANFAATAN SINAR MATAHARI IMPROVE THE ROLE OF CLEAN ENERGY THROUGH THE UTILIZATION Abstrak,” vol. 2, no. 2, pp. 100–115 (2019) [Google Scholar]
- A. Kusmantoro and I. Farikhah, “PENYULUHAN IDENTIFIKASI POTENSI ENERGI MATAHARI SEBAGAI SUMBER LISTRIK DI SD NEGERI TAMBAKHARJO SEMARANG,” vol. 10, pp. 52–56 (2022) [Google Scholar]
- A. A. Permanasari, P. Puspitasari, S. Sukarni, and R. Wulandari, “Performance Enhancement of Shell and Tube Heat Exchanger on Parallel Flow with Single Segmental Baffle,” J. Mech. Eng. Sci. Technol., vol. 4, no. 1, pp. 43–53, (2020) [Google Scholar]
- A. H. A. Al-waeli, K. Sopian, H. A. Kazem, and M. T. Chaichan, “Photovoltaic / Thermal ( PV / T ) systems : Status and future prospects,” Renew. Sustain. Energy Rev., vol. 77, no. March, pp. 109–130 (2017) [CrossRef] [Google Scholar]
- R. Y. M. Wong, C. Y. Tso, and C. Y. H. Chao, “Thermo-radiative energy conversion efficiency of a passive radiative fluid cooling system,” Renew. Energy, vol. 180, pp. 700–711 (2021) [CrossRef] [Google Scholar]
- P. Chaisaenrith, P. Taksakulvith, and S. Pavasupree, “Effect of nano titanium dioxide in intumescent fireproof coating on thermal performance and char morphology,” Mater. Today Proc., vol. 47, no. xxxx, pp. 3462–3467 (2021) [CrossRef] [Google Scholar]
- R. Taherialekouhi, S. Rasouli, and A. Khosravi, “International Journal of Heat and Mass Transfer An experimental study on stability and thermal conductivity of water-graphene oxide / aluminum oxide nanoparticles as a cooling hybrid nanofluid,” Int. J. Heat Mass Transf., vol. 145, p. 118751 (2019) [CrossRef] [Google Scholar]
- T. M. Sathe and A. S. Dhoble, “A review on recent advancements in photovoltaic thermal techniques,” Renew. Sustain. Energy Rev., vol. 76, no. February, pp. 645–672 (2017) [CrossRef] [Google Scholar]
- Y. Tiandho, F. Afriani, J. Fisika, and U. B. Belitung, “Model Konduktivitas Termal Nanofluida Berdasarkan Grup TakBerdimensi dengan Parameter Termofisika Kompleks,” vol. 17 (2020) [Google Scholar]
- A. B. C et al., “FABRIKASI ALUMINA DENGAN MENGGUNAKAN METODE DC THERMAL PLASMA ABSTRAK Alumina ( Al 2 O 3 ) merupakan bahan rekayasa struktural paling hemat biaya dan banyak digunakan sebagai material keramik. Alumina dapat digunakan sebagai media pelapisan dan anoda kor,” vol. 1, pp. 32–34 (2018) [Google Scholar]
- A. Mathematics, “IMPROVINGTHE COOLENT PERFORMANCE OF AN AUTOMOTIVESRADIATOR OPERATED WITH NANOFLUIDS OF ALUMINIUM AND SILVER,” vol. 119, no. 12, pp. 9815–9825 (2018) [Google Scholar]
- S. A. Pataya et al., “KARAKTERISASI LAPISAN TIPIS TITANIUM DIOKSIDA (TiO 2) YANG DITUMBUHKAN DENGAN METODE SPIN COATING DIATAS SUBSTRAT KACA,” (2016) [Google Scholar]
- X. Kang, S. Liu, Z. Dai, Y. He, X. Song, and Z. Tan, Titanium Dioxide : From Engineering to Applications, no. 2. (2019) [Google Scholar]
- A. A. Permanasari, P. Puspitasari, S. Sukarni, W. Irdianto, T. L. Ginta, and D. Gilang, “Thermophysical properties and heat transfer performance of TiO2-Distilled water nanofluid using shell and tube heat exchanger,” Proc. 2019 5th Int. Conf. Sci. Technol. ICST 2019, pp. 0–5 (2019) [Google Scholar]
- A. A. Permanasari, B. S. Kuncara, P. Puspitasari, S. Sukarni, T. L. Ginta, and W. Irdianto, “Convective heat transfer characteristics of TiO2-EG nanofluid as coolant fluid in heat exchanger,” AIP Conf. Proc., vol. 2120, no. July (2019) [Google Scholar]
- C. S. Nor Azwadi, I. M. Adamu, and M. M. Jamil, “Preparation Methods and Thermal Performance of Hybrid Nanofluids,” vol. 1, no. 1, pp. 1–9 (2019) [Google Scholar]
- A. P. Avita, F. Fadel, P. Poppy, and S. Sukarni, “Effect of additional mnfe2o4 on a combination of eg-water nanofluid and volumetric flowrate variations towards heat transfer in shell and tube heat exchanger system,” Key Eng. Mater., vol. 851 KEM, no. January 2018, pp. 38–46 (2020) [CrossRef] [Google Scholar]
- I. S. Feryan, R. T. Azmar, and A. Yonanda, “Unjuk Kerja Termal dan Elektrikal Kolektor Photovoltaic / Thermal (PV / T) Berdasarkan Ketebalan Sirip Absorber,” vol. 13, (2022) [Google Scholar]
- Z. Han, K. Liu, G. Li, X. Zhao, and S. Shittu, “Electrical and thermal performance comparison between PVT-ST and PV-ST systems,” Energy, vol. 237, p. 121589 (2021) [CrossRef] [Google Scholar]
- A. Listanti, A. Taufiq, A. Hidayat, and S. Sunaryono, “Investigasi Struktur dan Energi Band Gap Partikel Nano Tio2 Hasil Sintesis Menggunakan Metode Sol-Gel,” JPSE (Journal Phys. Sci. Eng., vol. 3, no. 1, pp. 8–15 (2018) [CrossRef] [Google Scholar]
- A. Astuti and S. Ningsi, “Sintesis Dan Karakterisasi Nanopartikel Titanium Dioksida (TiO2) Menggunakan Metode Sonokimia,” J. Ilmu Fis. | Univ. Andalas, vol. 9, no. 1, pp. 26–32 (2017) [Google Scholar]
- A. S. Ali, A. J. Mohammed, and H. R. Saud, “Hydrothermal synthesis of TiO2/Al2O3 nanocomposite and its application as improved sonocatalyst,” Int. J. Eng. Technol., vol. 7, no. 4, pp. 22–25 (2018) [CrossRef] [Google Scholar]
- M. K. A. Ali, H. Xianjun, L. Mai, C. Qingping, R. F. Turkson, and C. Bicheng, “Improving the tribological characteristics of piston ring assembly in automotive engines using Al2O3 and TiO2 nanomaterials as nano-lubricant additives,” Tribol. Int., vol. 103, pp. 540–554 (2016) [CrossRef] [Google Scholar]
- M. Mohankumar et al., “XRD Peak Profile Analysis of SiC Reinforced Al2O3Ceramic Composite Synthesized by Electrical Resistance Heating and Microwave Sintering: A Comparison,” Adv. Mater. Sci. Eng. (2021) [Google Scholar]
- N. Floch, Y. Mesaddeq, and Ciaut Jose, “Cr 3+ Doped Al 2 O 3 Obtained by Non-Hydrolytic Sol-Gel Methodology,” vol. 00, no. 00, pp. 1–8 (2018) [Google Scholar]
- Septiadi, “Karakterisasi Konduktivitas Termal Nanofluida Oksida Berbasis Fluida Dasar H2O,” J. Energi Dan Manufaktur, vol. 8, no. 2, pp. 219–224 (2016) [Google Scholar]
- T. Dewi, P. Risma, and Y. Oktarina, “A Review of Factors Affecting the Efficiency and Output of a PV System Applied in Tropical Climate,” IOP Conf. Ser. Earth Environ. Sci., vol. 258, no. 1, (2019) [Google Scholar]
- N. Hooshmandzade, A. Motevali, S. Reza Mousavi Seyedi, and P. Biparva, “Influence of single and hybrid waterbased nanofluids on performance of microgrid photovoltaic/thermal system,” Appl. Energy, vol. 304, no. May, p. 117769, (2021) [CrossRef] [Google Scholar]
- T. K. Murtadha and A. A. Hussein, “Optimization the performance of photovoltaic panels using aluminum-oxide nanofluid as cooling fluid at different concentrations and one-pass flow system,” Results Eng., vol. 15, no. August, p. 100541, (2022) [CrossRef] [Google Scholar]
- P. Jidhesh, T. V. Arjunan, N. Gunasekar, and M. Mohanraj, “Experimental thermodynamic performance analysis of semi-transparent photovoltaic-thermal hybrid collectors using nanofluids,” Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng., vol. 235, no. 5, pp. 1639–1651 (2021) [CrossRef] [Google Scholar]
- M. S. Y. Ebaid, A. M. Ghrair, and M. Al-Busoul, “Experimental investigation of cooling photovoltaic (PV) panels using (TiO2) nanofluid in water -polyethylene glycol mixture and (Al2O3) nanofluid in watercetyltrimethylammonium bromide mixture,” Energy Convers. Manag., vol. 155, no. November 2017, pp. 324–343, (2018) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.