Open Access
Issue |
E3S Web Conf.
Volume 448, 2023
The 8th International Conference on Energy, Environment, Epidemiology and Information System (ICENIS 2023)
|
|
---|---|---|
Article Number | 02020 | |
Number of page(s) | 26 | |
Section | Information System | |
DOI | https://doi.org/10.1051/e3sconf/202344802020 | |
Published online | 17 November 2023 |
- C. Sevilla-Salcedo, V. Imani, P. M. Olmos, V. Gómez-Verdejo, and J. Tohka, “Multi-task longitudinal forecasting with missing values on Alzheimer’s disease,” Comput. Methods Programs Biomed., vol. 226, p. 107056, 2022, doi: 10.1016/j.cmpb.2022.107056. [CrossRef] [Google Scholar]
- L. Ren, A. S. Seklouli, H. Zhang, T. Wang, and A. Bouras, “An adaptive Laplacian weight random forest imputation for imbalance and mixed-type data,” Inf. Syst., vol. 111, p. 102122, 2023, doi: https://doi.org/10.1016/j.is.2022.102122. [CrossRef] [Google Scholar]
- C. F. Tsai, M. L. Li, and W. C. Lin, “A class center based approach for missing value imputation,” Knowledge-Based Syst., vol. 151, pp. 124–135, 2018, doi: 10.1016/j.knosys.2018.03.026. [CrossRef] [Google Scholar]
- Z. G. Liu, Q. Pan, J. Dezert, and A. Martin, “Adaptive imputation of missing values for incomplete pattern classification,” Pattern Recognit., vol. 52, pp. 85–95, 2016, doi: 10.1016/j.patcog.2015.10.001. [CrossRef] [Google Scholar]
- L. A. Belanche, V. Kobayashi, and T. Aluja, “Handling missing values in kernel methods with application to microbiology data,” Neurocomputing, vol. 141, pp. 110–116, 2014, doi: https://doi.org/10.1016/j.neucom.2014.01.047. [CrossRef] [Google Scholar]
- M. G. Rahman and M. Z. Islam, “Missing value imputation using decision trees and decision forests by splitting and merging records: Two novel techniques,” Knowledge-Based Syst., vol. 53, pp. 51–65, 2013, doi: 10.1016/j.knosys.2013.08.023. [CrossRef] [Google Scholar]
- A. Paul, J. Sil, and C. Das Mukhopadhyay, “Gene selection for designing optimal fuzzy rule base classifier by estimating missing value,” Appl. Soft Comput., vol. 55, pp. 276–288, 2017, doi: https://doi.org/10.1016/j.asoc.2017.01.046. [CrossRef] [Google Scholar]
- Y. Chi, J. Hong, A. Jurek, W. Liu, and D. O’Reilly, “Privacy preserving record linkage in the presence of missing values,” Inf. Syst., vol. 71, pp. 199–210, 2017, doi: https://doi.org/10.1016/j.is.2017.07.001. [CrossRef] [Google Scholar]
- A. Azadeh et al., “Optimum estimation of missing values in randomized complete block design by genetic algorithm,” Knowledge-Based Syst., vol. 37, pp. 37–47, 2013, doi: 10.1016/j.knosys.2012.06.014. [CrossRef] [Google Scholar]
- R. Abolghasemi, R. Khadka, P. G. Lind, P. Engelstad, E. H. Viedma, and A. Yazidi, “Predicting missing pairwise preferences from similarity features in group decision making,” Knowledge-Based Syst., vol. 256, p. 109860, 2022, doi: https://doi.org/10.1016/j.knosys.2022.109860. [CrossRef] [Google Scholar]
- M.-C. Wang, C.-F. Tsai, and W.-C. Lin, “Towards missing electric power data imputation for energy management systems,” Expert Syst. Appl., vol. 174, p. 114743, 2021, doi: https://doi.org/10.1016/j.eswa.2021.114743. [CrossRef] [Google Scholar]
- H. Wen, P. Pinson, J. Gu, and Z. Jin, “Wind energy forecasting with missing values within a fully conditional specification framework,” Int. J. Forecast., 2023, doi: https://doi.org/10.1016/j.ijforecast.2022.12.006. [Google Scholar]
- P. Kang, “Locally linear reconstruction based missing value imputation for supervised learning,” Neurocomputing, vol. 118, pp. 65–78, 2013, doi: 10.1016/j.neucom.2013.02.016. [CrossRef] [Google Scholar]
- H. V. Bhagat and M. Singh, “DPCF: A framework for imputing missing values and clustering data in drug discovery process,” Chemom. Intell. Lab. Syst., vol. 231, p. 104686, 2022, doi: https://doi.org/10.1016/j.chemolab.2022.104686. [CrossRef] [Google Scholar]
- M. G. Rahman and M. Z. Islam, “Missing value imputation using decision trees and decision forests by splitting and merging records: Two novel techniques,” Knowledge-Based Syst., vol. 53, pp. 51–65, 2013, doi: https://doi.org/10.1016/j.knosys.2013.08.023. [CrossRef] [Google Scholar]
- Y. Shibuya, A. Hamm, and T. Cerratto Pargman, “Mapping HCI research methods for studying social media interaction: A systematic literature review,” Comput. Human Behav., vol. 129, p. 107131, 2022, doi: https://doi.org/10.1016/j.chb.2021.107131. [CrossRef] [Google Scholar]
- S. Farivar, F. Wang, and O. Turel, “Followers’ problematic engagement with influencers on social media: An attachment theory perspective,” Comput. Human Behav., vol. 133, p. 107288, 2022, doi: https://doi.org/10.1016/j.chb.2022.107288. [CrossRef] [Google Scholar]
- J. R. Ziolkowska, “Economic value of environmental and weather information for agricultural decisions – A case study for Oklahoma Mesonet,” Agric. Ecosyst. Environ., vol. 265, pp. 503–512, 2018, doi: https://doi.org/10.1016/j.agee.2018.07.008. [CrossRef] [Google Scholar]
- W. K. Dumenu, “What are we missing? Economic value of an urban forest in Ghana,” Ecosyst. Serv., vol. 5, pp. 137–142, 2013, doi: https://doi.org/10.1016/j.ecoser.2013.07.001. [CrossRef] [Google Scholar]
- J. Hersch, F. Mendoza Lopez, and J. B. Shinall, “Estimating years of education using the current population survey after 2014,” Econ. Lett., vol. 189, p. 109058, 2020, doi: https://doi.org/10.1016/j.econlet.2020.109058. [CrossRef] [Google Scholar]
- J. Du and L. Zhou, “Improving financial data quality using ontologies,” Decis. Support Syst., vol. 54, no. 1, pp. 76–86, 2012, doi: https://doi.org/10.1016/j.dss.2012.04.016. [CrossRef] [Google Scholar]
- C.-H. Cheng, C.-P. Chan, and Y.-J. Sheu, “A novel purity-based k nearest neighbors imputation method and its application in financial distress prediction,” Eng. Appl. Artif. Intell., vol. 81, pp. 283–299, 2019, doi: https://doi.org/10.1016/j.engappai.2019.03.003. [CrossRef] [Google Scholar]
- L. Ren, T. Wang, A. Sekhari Seklouli, H. Zhang, and A. Bouras, “A review on missing values for main challenges and methods,” Inf. Syst., p. 102268, 2023, doi: https://doi.org/10.1016/j.is.2023.102268. [Google Scholar]
- M. G. Rahman and M. Z. Islam, “FIMUS: A framework for imputing missing values using co-appearance, correlation and similarity analysis,” Knowledge-Based Syst., vol. 56, pp. 311–327, 2014, doi: 10.1016/j.knosys.2013.12.005. [CrossRef] [Google Scholar]
- C.-F. Tsai and F.-Y. Chang, “Combining instance selection for better missing value imputation,” J. Syst. Softw., vol. 122, pp. 63–71, 2016, doi: https://doi.org/10.1016/j.jss.2016.08.093. [CrossRef] [Google Scholar]
- C.-F. Tsai, M.-L. Li, and W.-C. Lin, “A class center based approach for missing value imputation,” Knowledge-Based Syst., vol. 151, pp. 124–135, 2018, doi: https://doi.org/10.1016/j.knosys.2018.03.026. [CrossRef] [Google Scholar]
- Z. Liu, Q. Pan, J. Dezert, and A. Martin, “Adaptive imputation of missing values for incomplete pattern classification,” Pattern Recognit., vol. 52, pp. 85–95, 2016, doi: https://doi.org/10.1016/j.patcog.2015.10.001. [CrossRef] [Google Scholar]
- J. Xia et al., “Adjusted weight voting algorithm for random forests in handling missing values,” Pattern Recognit., vol. 69, pp. 52–60, 2017, doi: https://doi.org/10.1016/j.patcog.2017.04.005. [CrossRef] [Google Scholar]
- M. G. Rahman and M. Z. Islam, “FIMUS: A framework for imputing missing values using co-appearance, correlation and similarity analysis,” Knowledge-Based Syst., vol. 56, pp. 311–327, 2014, doi: https://doi.org/10.1016/j.knosys.2013.12.005. [CrossRef] [Google Scholar]
- M. L. Yadav and B. Roychoudhury, “Handling missing values: A study of popular imputation packages in R,” Knowledge-Based Syst., vol. 160, pp. 104–118, 2018, doi: https://doi.org/10.1016/j.knosys.2018.06.012. [CrossRef] [Google Scholar]
- P. Kang, “Locally linear reconstruction based missing value imputation for supervised learning,” Neurocomputing, vol. 118, pp. 65–78, 2013, doi: https://doi.org/10.1016/j.neucom.2013.02.016. [CrossRef] [Google Scholar]
- M. Amiri and R. Jensen, “Missing data imputation using fuzzy-rough methods,” Neurocomputing, vol. 205, pp. 152–164, 2016, doi: https://doi.org/10.1016/j.neucom.2016.04.015. [CrossRef] [Google Scholar]
- S. García, J. Luengo, and F. Herrera, “Tutorial on practical tips of the most influential data preprocessing algorithms in data mining,” Knowledge-Based Syst., vol. 98, pp. 1–29, 2016, doi: https://doi.org/10.1016/j.knosys.2015.12.006. [CrossRef] [Google Scholar]
- J. Yang, Y. Shao, C. Li, and W. Wang, “A multistage deep imputation framework for missing values large segment imputation with statistical metrics,” Appl. Soft Comput., p. 110654, 2023, doi: https://doi.org/10.1016/j.asoc.2023.110654. [Google Scholar]
- S. Jurado, À. Nebot, F. Mugica, and M. Mihaylov, “Fuzzy inductive reasoning forecasting strategies able to cope with missing data: A smart grid application,” Appl. Soft Comput., vol. 51, pp. 225–238, 2017, doi: https://doi.org/10.1016/j.asoc.2016.11.040. [CrossRef] [Google Scholar]
- Y. Chen et al., “A global learning with local preservation method for microarray data imputation,” Comput. Biol. Med., vol. 77, pp. 76–89, 2016, doi: https://doi.org/10.1016/j.compbiomed.2016.08.005. [CrossRef] [Google Scholar]
- X. Feng, S. Wu, J. Srivastava, and P. Desikan, “Automatic instance selection via locality constrained sparse representation for missing value estimation,” Knowledge-Based Syst., vol. 85, pp. 210–223, 2015, doi: https://doi.org/10.1016/j.knosys.2015.05.007. [CrossRef] [Google Scholar]
- A. Azadeh et al., “Optimum estimation of missing values in randomized complete block design by genetic algorithm,” Knowledge-Based Syst., vol. 37, pp. 37–47, 2013, doi: https://doi.org/10.1016/j.knosys.2012.06.014. [CrossRef] [Google Scholar]
- R. Devi Priya, R. Sivaraj, and N. Sasi Priyaa, “Heuristically repopulated Bayesian ant colony optimization for treating missing values in large databases,” Knowledge-Based Syst., vol. 133, pp. 107–121, 2017, doi: 10.1016/j.knosys.2017.06.033. [CrossRef] [Google Scholar]
- K. Krysiak-Baltyn, T. Nordahl Petersen, K. Audouze, N. Jørgensen, L. Ängquist, and S. Brunak, “Compass: A hybrid method for clinical and biobank data mining,” J. Biomed. Inform., vol. 47, pp. 160–170, 2014, doi: https://doi.org/10.1016/j.jbi.2013.10.007. [CrossRef] [Google Scholar]
- C. Sevilla-Salcedo, V. Imani, P. M. Olmos, V. Gómez-Verdejo, and J. Tohka, “Multi-task longitudinal forecasting with missing values on Alzheimer’s disease,” Comput. Methods Programs Biomed., vol. 226, p. 107056, 2022, doi: https://doi.org/10.1016/j.cmpb.2022.107056. [CrossRef] [Google Scholar]
- Z. Zhao, Z. Wu, Y. Zheng, and P. Ma, “Recurrent neural networks for atmospheric noise removal from InSAR time series with missing values,” ISPRS J. Photogramm. Remote Sens., vol. 180, no. August, pp. 227–237, 2021, doi: 10.1016/j.isprsjprs.2021.08.009. [CrossRef] [Google Scholar]
- T. Levy-Loboda, M. Rav-Acha, A. Katz, and N. Nissim, “Cardio-ML: Detection of malicious clinical programmings aimed at cardiac implantable electronic devices based on machine learning and a missing values resemblance framework,” Artif. Intell. Med., vol. 122, p. 102200, 2021, doi: https://doi.org/10.1016/j.artmed.2021.102200. [CrossRef] [Google Scholar]
- N. Basurto, C. Cambra, and Á. Herrero, “Improving the detection of robot anomalies by handling data irregularities,” Neurocomputing, vol. 459, pp. 419–431, 2021, doi: https://doi.org/10.1016/j.neucom.2020.05.101. [CrossRef] [Google Scholar]
- X. Lai, X. Wu, and L. Zhang, “Autoencoder-based multi-task learning for imputation and classification of incomplete data,” Appl. Soft Comput., vol. 98, p. 106838, 2021, doi: https://doi.org/10.1016/j.asoc.2020.106838. [CrossRef] [Google Scholar]
- S. Piri, “Missing care: A framework to address the issue of frequent missing values;The case of a clinical decision support system for Parkinson’s disease,” Decis. Support Syst., vol. 136, p. 113339, 2020, doi: https://doi.org/10.1016/j.dss.2020.113339. [CrossRef] [Google Scholar]
- D. Xu, P. J.-H. Hu, T.-S. Huang, X. Fang, and C.-C. Hsu, “A deep learning–based, unsupervised method to impute missing values in electronic health records for improved patient management,” J. Biomed. Inform., vol. 111, p. 103576, 2020, doi: https://doi.org/10.1016/j.jbi.2020.103576. [CrossRef] [Google Scholar]
- A. Janghorbani and M. H. Moradi, “Fuzzy Evidential Network and Its Application as Medical Prognosis and Diagnosis Models,” J. Biomed. Inform., vol. 72, pp. 96–107, 2017, doi: https://doi.org/10.1016/j.jbi.2017.07.004. [CrossRef] [Google Scholar]
- Y. Li and A. Ngom, “Classification approach based on non-negative least squares,” Neurocomputing, vol. 118, pp. 41–57, 2013, doi: 10.1016/j.neucom.2013.02.012. [CrossRef] [Google Scholar]
- J. Abawajy, A. Kelarev, M. Chowdhury, A. Stranieri, and H. F. Jelinek, “Predicting cardiac autonomic neuropathy category for diabetic data with missing values,” Comput. Biol. Med., vol. 43, no. 10, pp. 1328–1333, 2013, doi: https://doi.org/10.1016/j.compbiomed.2013.07.002. [CrossRef] [Google Scholar]
- Y. Qu, J. Rong, Z. Li, and K. Chen, “ST-A-PGCL: Spatiotemporal adaptive periodical graph contrastive learning for traffic prediction under real scenarios,” Knowledge-Based Syst., vol. 272, p. 110591, 2023, doi: https://doi.org/10.1016/j.knosys.2023.110591. [CrossRef] [Google Scholar]
- R. Rios et al., “Handling missing values in machine learning to predict patient-specific risk of adverse cardiac events: Insights from REFINE SPECT registry,” Comput. Biol. Med., vol. 145, p. 105449, 2022, doi: https://doi.org/10.1016/j.compbiomed.2022.105449. [CrossRef] [Google Scholar]
- F. Shah, A. Castelltort, and A. Laurent, “Handling missing values for mining gradual patterns from NoSQL graph databases,” Futur. Gener. Comput. Syst., vol. 111, pp. 523–538, 2020, doi: https://doi.org/10.1016/j.future.2019.10.004. [CrossRef] [Google Scholar]
- G. Choi, H.-S. Oh, and D. Kim, “Enhancement of variational mode decomposition with missing values,” Signal Processing, vol. 142, pp. 75–86, 2018, doi: https://doi.org/10.1016/j.sigpro.2017.07.007. [CrossRef] [Google Scholar]
- M. L. Yadav and B. Roychoudhury, “Handling missing values: A study of popular imputation packages in R,” Knowledge-Based Syst., vol. 160, no. June, pp. 104–118, 2018, doi: 10.1016/j.knosys.2018.06.012. [CrossRef] [Google Scholar]
- J. Xia et al., “Adjusted weight voting algorithm for random forests in handling missing values,” Pattern Recognit., vol. 69, pp. 52–60, 2017, doi: 10.1016/j.patcog.2017.04.005. [CrossRef] [Google Scholar]
- S. García, J. Luengo, and F. Herrera, “Tutorial on practical tips of the most influential data preprocessing algorithms in data mining,” Knowledge-Based Syst., vol. 98, pp. 1–29, 2016, doi: 10.1016/j.knosys.2015.12.006. [CrossRef] [Google Scholar]
- M. Amiri and R. Jensen, “Missing data imputation using fuzzy-rough methods,” Neurocomputing, vol. 205, pp. 152–164, 2016, doi: 10.1016/j.neucom.2016.04.015. [CrossRef] [Google Scholar]
- M. L. Yadav and B. Roychoudhury, “Handling missing values: A study of popular imputation packages in R,” Knowledge-Based Syst., vol. 160, no. December 2017, pp. 104–118, 2018, doi: 10.1016/j.knosys.2018.06.012. [CrossRef] [Google Scholar]
- R. Abolghasemi, R. Khadka, P. G. Lind, P. Engelstad, E. H. Viedma, and A. Yazidi, “Predicting missing pairwise preferences from similarity features in group decision making,” Knowledge-Based Syst., vol. 256, p. 109860, 2022, doi: 10.1016/j.knosys.2022.109860. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.