Open Access
E3S Web Conf.
Volume 448, 2023
The 8th International Conference on Energy, Environment, Epidemiology and Information System (ICENIS 2023)
Article Number 02021
Number of page(s) 9
Section Information System
Published online 17 November 2023
  1. D. Khanna, N. Jindal, H. Singh, P.S. Rana, Applications and Challenges in Healthcare Big Data: A Strategic Review. Current Medical Imaging, 19(1), 27-36. (2023). [CrossRef] [Google Scholar]
  2. G. Lampropoulos, Educational Data Mining and Learning Analytics in the 21st Century. In Encyclopedia of Data Science and Machine Learning (pp. 1642-1651). IGI Global. (2023). [Google Scholar]
  3. B.C. Guerra, H.J. Koo, C. Caldas, F. Leite, Prediction of waste diversion and identification of trends in construction and demolition waste data using data mining. International Journal of Construction Management, pp.1-10. (2023). [Google Scholar]
  4. X. Shu, Y. Ye, Knowledge Discovery: Methods from data mining and machine learning. Social Science Research, 110, 102817. (2023). [Google Scholar]
  5. J. Zeng, B. Jia, Live Multiattribute Data Mining and Penalty Decision-Making in Basketball Games Based on the Apriori Algorithm. Applied Bionics and Biomechanics, 2022, (2022). [Google Scholar]
  6. H. Ma, J. Ding, M. Liu, Y. Liu, Connections between Various Disorders: Combination Pattern Mining Using Apriori Algorithm Based on Diagnosis Information from Electronic Medical Records. BioMed Research International, 2022. [Google Scholar]
  7. Y.A.I. Zawayda, Mining postgraduate students' data using apriori algorithm (Doctoral dissertation, Faculty of Information Technology, Universiti Utara Malaysia), (2006). [Google Scholar]
  8. Y. Kurnia, Y. Isharianto, Y.C. Giap, A. Hermawan, A. Study of application of data mining market basket analysis for knowing sales pattern (association of items) at the O! Fish restaurant using apriori algorithm. In Journal of Physics: Conference Series (Vol. 1175, No. 1, p. 012047). IOP Publishing, (2019). [Google Scholar]
  9. A.B. Patil, A Role of Data mining technique in Healthcare System of Lactating Animals. International Research of Humanities and Interdisciplinary Studies, 2021. [Google Scholar]
  10. P. He, B. Zhang, S. Shen, Effects of Out-of-Hospital Continuous Nursing on Postoperative Breast Cancer Patients by Medical Big Data. Journal of Healthcare Engineering, (2022). [Google Scholar]
  11. M.S. Sornalakshmi, M. Balamurali, M. Venkatesulu, K. Navaneetha, R. K. Lakshmana, K. Seifedine, M. Gunasekaran, H. Ching-Hsien, M. A. Bala, Hybrid method for mining rules based on enhanced Apriori algorithm with sequential minimal optimization in healthcare industry. Neural Computing and Applications, 1-14. (2020). [Google Scholar]
  12. Q. Zhang, Personalized Hybrid Recommendation for Tourist Users Based on Matrix Cluster Apriori Mining Algorithm. Mathematical Problems in Engineering, (2022). [Google Scholar]
  13. S.P. Shankar, E. Naresh, H. Agrawal, Optimization of association rules using hybrid data mining technique. Innovations in Systems and Software Engineering, 18(2), 251-261. (2022). [Google Scholar]
  14. W. Mohamed, M.A. Abdel-Fattah, A proposed hybrid algorithm for mining frequent patterns on Spark. International Journal of Business Intelligence and Data Mining, 20(2), 146-169. (2022). [Google Scholar]
  15. H. Smedberg, S. Bandaru, Interactive knowledge discovery and knowledge visualization for decision support in multi-objective optimization. European Journal of Operational Research, 306(3), pp.1311-1329. (2023). [CrossRef] [Google Scholar]
  16. O. Firas, A combination of SEMMA & CRISP-DM models for effectively handling big data using formal concept analysis based knowledge discovery: A data mining approach. World Journal of Advanced Engineering Technology and Sciences, 8(1), pp.009-014. (2023). [Google Scholar]
  17. S.M. Dol, P.M. Jawandhiya, Classification Technique and its Combination with Clustering and Association Rule Mining in Educational Data Mining—A survey. Engineering Applications of Artificial Intelligence, 122, pp.106071. (2023). [CrossRef] [Google Scholar]
  18. M. Shawkat, M. Badawi, S. El-ghamrawy, R. Arnous, A. El-desoky, An optimized FP-growth algorithm for discovery of association rules. The Journal of Supercomputing, pp.1-28. (2022). [Google Scholar]
  19. M.M. Hassan, A. Karim, S. Mollick, S. Azam, E. Ignatious, A.F. Al Haque, An Apriori Algorithm-Based Association Rule Analysis to detect Human Suicidal Behaviour. Procedia Computer Science, 219, pp.1279-1288. (2023). [Google Scholar]
  20. F. Li, C. Meng, C. Wang, S. Fan, Equipment Quality Information Mining Method Based on Improved Apriori Algorithm. Journal of Sensors, (2023). [Google Scholar]
  21. M. Rani, K.V. Rao, Apriori algorithm for re-categorization of railway stations. In AIP Conference Proceedings, AIP Publishing, 2796,1. (2023). [Google Scholar]
  22. X. Yuan, An improved Apriori algorithm for mining association rules. In AIP conference proceedings. AIP Publishing, 1820,1. (2017). [Google Scholar]
  23. K.S. Kumar, R.M. Chezian, A survey on association rule mining using apriori algorithm. International Journal of Computer Applications, 45(5), pp.47-50. (2012). [Google Scholar]
  24. X. Deng, D. Zeng, H. Shen, Causation analysis model: based on AHP and hybrid Apriori-Genetic algorithm. Journal of Intelligent & Fuzzy Systems, 35(1), 767-778. (2018). [Google Scholar]
  25. C. Fernandez-Basso, M.D. Ruiz, M.J. Martin-Bautista, New Spark solutions for distributed frequent itemset and association rule mining algorithms. Cluster Computing, pp.1-18. (2023). [Google Scholar]
  26. A.I. Idris, E.A. Sampetoding, V.Y.P. Ardhana, I. Maritsa, A. Sakri, H. Ruslan, E.S. Manapa, Comparison of Apriori, Apriori-TID and FP-Growth Algorithms in Market Basket Analysis at Grocery Stores. The IJICS (International Journal of Informatics and Computer Science), 6(2), 107-112. (2022). [Google Scholar]
  27. M. Krishnamoorthy, R. Karthikeyan, Method For Mini Frequent Patterns From Large Data-Sets. European Journal of Molecular & Clinical Medicine, 9(07), 2022. [Google Scholar]
  28. M.R. Al-Bana, M.S. Farhan, N.A. Othman, An efficient spark-based hybrid frequent itemset mining algorithm for big data. Data, 7(1), p.11. (2022). [CrossRef] [Google Scholar]
  29. S. Neelima, N. Satyanarayana, P. Krishna Murthy, Minimizing frequent itemsets using hybrid ABCBAT algorithm. In Data Engineering and Intelligent Computing: Proceedings of IC3T 2016. Springer Singapore, pp. 91-97. (2018). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.