Open Access
Issue
E3S Web Conf.
Volume 448, 2023
The 8th International Conference on Energy, Environment, Epidemiology and Information System (ICENIS 2023)
Article Number 02022
Number of page(s) 10
Section Information System
DOI https://doi.org/10.1051/e3sconf/202344802022
Published online 17 November 2023
  1. F.M. Uzoka, M. Gift, K. Attai, B.A. Akinnuwesi, S.V. Mlay, P. Zeh, A. Kiirya, C. Muhumuza, J.N. Bukenya, S. Fashoto, D. Asuquo, Tackling Occupational and Nosocomial Infection using Vitex-Medical Assistant Tool. In 2022 IST-Africa Conference (IST-Africa). IEEE, pp. 1-9. (2022). [Google Scholar]
  2. Bearman, G., Morgan, D. J., Murthy, R. K., & Hota, S. (Eds.). (2022). Infection prevention: new perspectives and controversies. Springer Nature. [CrossRef] [Google Scholar]
  3. I.D. Kocakoç, G.B. Türkölmez, Using Data Mining Techniques for Designing Patient-Friendly Hospitals. In Advances in Econometrics, Operational Research, Data Science and Actuarial Studies: Techniques and Theories. Cham: Springer International Publishing, pp. 321-343. (2022). [Google Scholar]
  4. K. Batko, A. Ślęzak, The use of Big Data Analytics in healthcare. Journal of big Data, 9(1), pp.3. (2022). [CrossRef] [Google Scholar]
  5. T.T. Inan, M.B.R. Samia, I.T. Tulin, M.N. Islam, A Decision Support Model to Predict ICU Readmission through Data Mining Approach. In PACIS, pp. 218. (2018). [Google Scholar]
  6. A. Ribeiro, F. Portela, M. Santos, A. Abelha, J. Machado, F. Rua, Patients’ admissions in intensive care units: a clustering overview. Information, 8(1), pp.23. (2017). [CrossRef] [Google Scholar]
  7. E.T. Nekerow, D. Yakob, D. Teshome, Data mining based medical intelligent system for chronic kidney disease diagnosis and treatment in the Oromo language. International Journal of Intelligent Systems and Applications in Engineering, 10(2), pp.232-241. (2022). [Google Scholar]
  8. R. Bhavani, G.S. Sadasivam, A novel feature selection based on apriori property and correlation analysis for protein sequence classification using mapreduce. International Journal of Data Mining and Bioinformatics, 17(3), pp.255-265. (2017). [CrossRef] [Google Scholar]
  9. S. Aslani, J. Jacob, Utilisation of deep learning for COVID-19 diagnosis. Clinical Radiology, 78(2), pp.150-157. (2023). [CrossRef] [PubMed] [Google Scholar]
  10. B. Musheyev, M.S. Boparai, R. Kimura, R. Janowicz, S. Pamlanye, W. Hou, T.Q. Duong, Longitudinal medical subspecialty follow-up of critically and non-critically ill hospitalized COVID-19 survivors up to 24 months after discharge. Internal and Emergency Medicine, 18(2), pp.477-486. (2023). [CrossRef] [PubMed] [Google Scholar]
  11. A. Raftarai, R.R. Mahounaki, M. Harouni, M. Karimi, S.K. Olghoran, Predictive models of hospital readmission rate using the improved AdaBoost in COVID-19. In Intelligent Computing Applications for COVID-19 (pp. 67-86). CRC Press. (2021). [Google Scholar]
  12. B. Davazdahemami, D. Zolbanin, D. Delen, An explanatory machine learning framework for studying pandemics: The case of COVID-19 emergency department readmissions. Decision Support Systems, 161, pp.113730. (2022). [CrossRef] [PubMed] [Google Scholar]
  13. C.H. Yu, Experimental implementation of quantum algorithm for association rules mining. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 12(3), pp.676-684. (2022). [CrossRef] [Google Scholar]
  14. M.S. Krishnan, A.S. Nair, J. Sebastian, Comparative analysis of apriori and ECLAT algorithm for frequent itemset data mining. In Ubiquitous Intelligent Systems: Proceedings of ICUIS 2021, Springer Singapore, pp. 489-497. (2022). [Google Scholar]
  15. R. Agrawal, C. Faloutsos, A. Swami, Efficient similarity search in sequence databases. In Foundations of Data Organization and Algorithms: 4th International Conference, FODO'93 Chicago, Illinois, USA. Springer Berlin Heidelberg, October 13–15, 1993 Proceedings 4, pp. 69-84. (1993). [Google Scholar]
  16. C. Wang, X. Zheng, Application of improved time series Apriori algorithm by frequent itemsets in association rule data mining based on temporal constraint. Evolutionary Intelligence, 13(1), pp.39-49. (2020). [CrossRef] [Google Scholar]
  17. J.K. Chahal, Finding Association Rules in Medical Datasets. International Journal of Scientific Research in Science and Technology, 2(3), pp.167-170. (2019). [Google Scholar]
  18. A. ÇELİK, Using apriori data mining method in COVID-19 diagnosis. Journal of Engineering Technology and Applied Sciences, 5(3), pp.121-131. (2020). [CrossRef] [Google Scholar]
  19. D. Dhinakaran, P.J. Prathap, Protection of data privacy from vulnerability using two-fish technique with Apriori algorithm in data mining. The Journal of Supercomputing, 78(16), pp.17559-17593. (2022). [CrossRef] [Google Scholar]
  20. S. Raj, D. Ramesh, M. Sreenu, K.K. Sethi, EAFIM: efficient apriori-based frequent itemset mining algorithm on Spark for big transactional data. Knowledge and Information Systems, 62, pp.3565-3583. (2020). [CrossRef] [Google Scholar]
  21. S. Anas, N. Rumui, A. Roy, P.H. Saputro, Comparison of apriori algorithm and fp-growth in managing store transaction data. International Journal of Computer and Information System (IJCIS), 3(4), pp.158-162. (2022). [Google Scholar]
  22. N. Karimtabar, M.J.S. Fard, Finding Frequent Items: A Novel Method for Improving the Apriori Algorithm. Computer Science, 23(2). (2022). [CrossRef] [Google Scholar]
  23. M. Dehghani, A. Kamandi, M. Shabankhah, A. Moeini, Toward a distinguishing approach for improving the apriori algorithm. In 2019 9th International Conference on Computer and Knowledge Engineering (ICCKE). IEEE, pp. 309-314). (2019). [Google Scholar]
  24. M. Seyfi, Y. Xu, H-DAC: discriminative associative classification in data streams. Soft Computing, 27(2), pp.953-971. (2023). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.