Open Access
Issue |
E3S Web Conf.
Volume 448, 2023
The 8th International Conference on Energy, Environment, Epidemiology and Information System (ICENIS 2023)
|
|
---|---|---|
Article Number | 03077 | |
Number of page(s) | 13 | |
Section | Environment Science | |
DOI | https://doi.org/10.1051/e3sconf/202344803077 | |
Published online | 17 November 2023 |
- M. J. González-Muñoz, M. A. Rodríguez, S. Luque, and J. R. Álvarez, Recovery of heavy metals from metal industry waste waters by chemical precipitation and nanofiltration, Desalination, 200(1), 742–744 (2006) [Google Scholar]
- A. Rahmani-Sani et al., Use of chicken feather and eggshell to synthesize a novel magnetized activated carbon for sorption of heavy metal ions, Bioresour. Technol., 297, 122452 (2020) [CrossRef] [Google Scholar]
- J. Kong et al., Adsorption of Pb(II) from aqueous solution using keratin waste - hide waste: Equilibrium, kinetic and thermodynamic modeling studies, Chem. Eng. J., 241, 393–400 (2014) [CrossRef] [Google Scholar]
- A. R. Kumari and K. S., U.Kiran Babu, Optimization of Lead Adsorption using Animal Biopolymers by Factorial Design, IJSID, 1(3), 303–319 (2011) [Google Scholar]
- M. A. Khosa, J. Wu, and A. Ullah, Chemical modification, characterization, and application of chicken feathers as novel biosorbents, RSC Adv., 3(43), 20800 (2013) [CrossRef] [Google Scholar]
- A. T. P. F. Nor, W. Sunarto, Synthesis of Biomassf Chicken Activated NaOH/Na2SO3 Its Applications To Reduce Copper Levels Of Electroplating Waste, 3(2252), (2014) [Google Scholar]
- H. W. Xiangyu Jin, Lu Lu, Haibo Wu, Qinfei Ke, Duck feather/nonwoven composite fabrics for removing metals present in textile dyeing effluents, J. Eng. Fiber. Fabr., vol. 8(3), 89–96 (2013) [Google Scholar]
- M. Park, B. Kim, H. Kyoung, S. Park, and H. Kim, Preparation and characterization of keratin-based biocomposite hydrogels prepared by electron beam irradiation, Mater. Sci. Eng. C, 33(8), 5051–5057 (2013) [CrossRef] [Google Scholar]
- D. Barati, S. Kader, S. R. Pajoum Shariati, S. Moeinzadeh, R. H. Sawyer, and E. Jabbari, Synthesis and Characterization of Photo-Cross-Linkable Keratin Hydrogels for Stem Cell Encapsulation, Biomacromolecules, 18(2), 398–412 (2017) [CrossRef] [PubMed] [Google Scholar]
- H. Xu, S. Cai, L. Xu, and Y. Yang, Water-stable three-dimensional ultrafine fibrous scaffolds from keratin for cartilage tissue engineering, Langmuir, 30(28), 8461–8470, (2014) [CrossRef] [PubMed] [Google Scholar]
- B. Mu, F. Hassan, and Y. Yang, Controlled assembly of secondary keratin structures for continuous and scalable production of tough fibers from chicken feathers, Green Chem., 22(5), 1726–1734 (2020) [CrossRef] [Google Scholar]
- A. Das, A. Das, A. Basu, P. Datta, M. Gupta, and A. Mukherjee, Newer guar gum ester/chicken feather keratin interact films for tissue engineering, Int. J. Biol. Macromol., 180, 339–354 (2021) [CrossRef] [Google Scholar]
- J. R. Barone and W. F. Schmidt, Polyethylene reinforced with keratin fibers obtained from chicken feathers, Compos. Sci. Technol., 65(2), 173–181 (2005) [CrossRef] [Google Scholar]
- S. Maou, A. Meghezzi, Y. Grohens, Y. Meftah, A. Kervoelen, and A. Magueresse, Effect of various chemical modifications of date palm fibers (DPFs) on the thermo-physical properties of polyvinyl chloride (PVC)–high-density polyethylene (HDPE) composites, Ind. Crops Prod., 171, 113974 (2021) [CrossRef] [Google Scholar]
- Negawo, Tolera, Y. Polat, and A. Kilic, Effect of compatibilizer and fiber loading on ensete fiber-reinforced HDPE green composites: Physical, mechanical, and morphological properties, Compos. Sci. Technol., 213, 108937 (2021) [CrossRef] [Google Scholar]
- B. Margono et al., Analysis of Mechanical Properties of HDPE Fiber Reinforced Plastic Composite Materials Reviewing from Tensible and Bending Strengths, 6, 55–61 (2020) [Google Scholar]
- T. Ojahan R and T. Cahyono, Analysis of Banana Kepok Midrib Fiber Material Matrix Composite Fiber Recycled Polypropylene (RPP) Against Mechanical Properties and SEM, Mechanical, 6(2), 64–70 (2015) [CrossRef] [Google Scholar]
- S. D. Samah, Characterization of Biodegradable Plastic From LDPE-g-MA And Palm Empty Starch Fruits, EKSAKTA Berk. Ilm. Bid. MIPA, 18(02), 30–38 (2017) [CrossRef] [Google Scholar]
- A. Goi, N. Nilb, S. Suursoo, K. Putk, and M. Kiisk, Polyethylene characterization by FTIR, Polym. Test., 21(5), 557–563 (2002) [CrossRef] [Google Scholar]
- Hasnan Muin, Kopolimerisasi LLDPPE dengan Anhidrat Maleat tanpa Inisiator dalam LABOPLASTITOMIL, (2000) [Google Scholar]
- A. Yuniari and E. Kasmudjiastuti, Spektroscopi FTIR dan sifat mekanik nanokomposit grafting HDPE dan nanoprecipitated calcium carbonate (NPCC), Maj. Kulit, Karet, dan Plast., 28(2), 89, 2012, [CrossRef] [Google Scholar]
- I. Rahayu, A. Zainuddin, Y. T. Malik, and S. Hendrana, Maleic anhydride grafted onto high density polyethylene with an enhanced grafting degree via monomer microencapsulation, Heliyon, 6(4), e03742, (2020) [Google Scholar]
- N. Dayma and B. K. Satapathy, Microstructural correlations to micromechanical properties of polyamide-6/low density polyethylene-grafted-maleic anhydride/nanoclay ternary nanocomposites, Mater. Des., 33(1), 510–522 (2012) [CrossRef] [Google Scholar]
- R. K. Anantha and S. Kota, Removal of lead by adsorption with the renewable biopolymer composite of feather (Dromaius novaehollandiae) and chitosan (Agaricus bisporus), Environ. Technol. Innov., 6, 11–26, (2016) [CrossRef] [Google Scholar]
- X. Jin et al., Preparation of keratin/PET nanofiber membrane and its high adsorption performance of Cr(VI), Sci. Total Environ., 710(Vi), 135546 (2020) [CrossRef] [Google Scholar]
- A. Asnawati, Penentuan Kapasitas Adsorpsi Selulosa Terhadap Rhodamin B dalam Sistem Dinamis, J. Kim. Ris., 2(1), 23, (2017) [Google Scholar]
- T. Castelo-Grande et al., Magnetic water treatment in a wastewater treatment plant: Part II - Processing waters and kinetic study, J. Environ. Manage., 285, 1–5, (2021) [Google Scholar]
- A. Goi, N. Nilb, S. Suursoo, K. Putk, M. Kiisk, and J. Bolobajev, Regeneration of filter materials contaminated by naturally occurring radioactive compounds in drinking water treatment plant, J. Water Process Eng., 30, 100464, (2019) [CrossRef] [Google Scholar]
- P. Jangid and M. P. Inbaraj, Applications of nanomaterials in wastewater treatment, Mater. Today Proc., 43, 2877–2881, (2021) [CrossRef] [Google Scholar]
- W. K. Siabi, E. D.-J. Owusu-Ansah, H. M. K. Essandoh, and N. Y. Asiedu, Modelling the adsorption of iron and manganese by activated carbon from teak and shea charcoal for continuous low flow, Water-Energy Nexus, 4, 88–94 (2021) [CrossRef] [Google Scholar]
- H. Zeng, S. Sun, Y. Yu, J. Zhang, and D. Li, Column studies on the adsorption of As(V) by granular chitosan adsorbent prepared with backwashing iron-containing sludge, Colloids Surfaces A Physicochem. Eng. Asp., 627, 127247 (2021) [CrossRef] [Google Scholar]
- T. C. Egbosiuba et al., Activated multi-walled carbon nanotubes decorated with zero valent nickel nanoparticles for arsenic, cadmium and lead adsorption from wastewater in a batch and continuous flow modes, J. Hazard. Mater., 126993 (2021) [Google Scholar]
- M. Banerjee, R. K. Basu, and S. K. Das, Cr(VI) adsorption by a green adsorbent walnut shell: Adsorption studies, regeneration studies, scale-up design and economic feasibility, Process Saf. Environ. Prot., 116, 693–702, (2018) [CrossRef] [Google Scholar]
- I. A. Aguayo-Villarreal, A. Bonilla-Petriciolet, V. Hernández-Montoya, M. A. Montes-Morán, and H. E. Reynel-Avila, Batch and column studies of Zn2+ removal from aqueous solution using chicken feathers as sorbents, Chem. Eng. J., 167(1), 67–76, (2011) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.