Open Access
Issue |
E3S Web of Conf.
Volume 452, 2023
XV International Online Conference “Improving Farming Productivity and Agroecology – Ecosystem Restoration” (IPFA 2023)
|
|
---|---|---|
Article Number | 03006 | |
Number of page(s) | 9 | |
Section | Geodesy and Geoinformation | |
DOI | https://doi.org/10.1051/e3sconf/202345203006 | |
Published online | 30 November 2023 |
- G. Olaleru, H. Ohize, A. S. Mohammed and U. S. Dauda, Optimal Detection Technique for Primary User Emulator in Cognitive Radio Network, 2021 1st International Conference on Multidisciplinary Engineering and Applied Science (ICMEAS), 1-6 (2021) doi: 10.1109/ICMEAS52683.2021.9739814 [Google Scholar]
- Y. Zhang, Y. Wang, J. Chen, B. Zhao, C. Gao, J. Dong, Spectrum Reallocation Algorithm Based on the Mobile Model for Cognitive Radio Networks, 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chongqing, China, 11-14 (2020) doi: 10.1109/ITNEC48623.2020.9085187 [Google Scholar]
- G. S. Sumith, A. Mysore, S. Nandakumar, Enhanced Model for Spectrum Handoff in Cognitive Radio Networks, 2018 Second International Conference on Electronics, Communication and Aerospace Technology (ICECA), 944-950 (2018) doi: 10.1109/ICECA.2018.8474816 [Google Scholar]
- Y. Zhang, Y. Wang, J. Chen, B. Zhao, C. Gao, J. Dong, Spectrum Reallocation Algorithm Based on the Mobile Model for Cognitive Radio Networks, 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), 11-14 (2020) doi: 10.1109/ITNEC48623.2020.9085187 [Google Scholar]
- W. Bednarczyk, P. Gajewski, L. Nowosielski, Energy-efficient Dynamic Spectrum Management in Cognitive Radio Sensor Networks, 2016 Progress in Electromagnetic Research Symposium (PIERS), Shanghai, China, 1075-1079 (2016) doi: 10.1109/PIERS.2016.7734581 [Google Scholar]
- E. Reypnazarov, H. Khujamatov, D. Khasanov, Z. Allamuratova, Analysis of Hardware and Software Tools for Implementation of Cognitive Radio Networks, 2022 International Conference on Information Science and Communications Technologies (ICISCT), Tashkent, Uzbekistan, 1-6 (2022) doi: 10.1109/ICISCT55600.2022.10146904 [Google Scholar]
- A. A. Tabassam, F. A. Ali, S. Kalsait, M. U. Suleman, Building Software-Defined Radios in MATLAB Simulink -A Step Towards Cognitive Radios, 2011 UkSim 13th International Conference on Computer Modelling and Simulation, Cambridge, UK, 492-497 (2011) doi: 10.1109/UKSIM.2011.100 [Google Scholar]
- S. Sharma, S. D. Roy, S. Kundu, Secrecy Performance of Two-Way Communication in CRN with Half-Duplex AF Relay under Eavesdropper Attacking, 2018 IEEE 13th International Conference on Industrial and Information Systems (ICIIS), 263-268 (2018) doi: 10.1109/ICIINFS.2018.8721403 [Google Scholar]
- M. Hasegawa, H. Hirai, K. Nagano, H. Harada, K. Aihara, Optimization for Centralized and Decentralized Cognitive Radio Networks, Proceedings of the IEEE, vol. 102, no. 4, pp. 574-584, April 2014, doi: 10.1109/JPROC.2014.2306255. [CrossRef] [Google Scholar]
- M. Megayanti, Y. P. Nugraha, I. P. Sary, E. Hidayat, B. R. Trilaksono, Modeling and Implementation of Hexacopter Guidance System Using Fuzzy Logic Control Under Wind Disturbance, 2018 IEEE 8th International Conference on System Engineering and Technology (ICSET), 12-17 (2018) doi: 10.1109/ICSEngT.2018.8606399 [Google Scholar]
- M. S. Mahmud, J. Z. Huang, X. Fu, R. Ruby, K. Wu, Unsupervised Adaptation for High-Dimensional with Limited-Sample Data Classification Using Variational Autoencoder. Computing and informatics, 40(1),1–28 (2021) https://doi.org/10.31577/cai_2021_1_1 [CrossRef] [Google Scholar]
- E. Reypnazarov, H. Khujamatov, D. Khasanov and Z. Allamuratova, Research of Energy Detection Method in Spectrum Sensing in Cognitive Radio Networks, 2022 International Conference on Information Science and Communications Technologies (ICISCT), Tashkent, Uzbekistan, 1-6 (2022) doi: 10.1109/ICISCT55600.2022.10146830 [Google Scholar]
- R. Kishore, S. Gurugopinath, P. C. Sofotasios, S. Muhaidat, N. Al-Dhahir, Opportunistic Ambient Backscatter Communication in RF-Powered Cognitive Radio Networks, IEEE Transactions on Cognitive Communications and Networking, 5(2), 413-426 (2019) doi: 10.1109/TCCN.2019.2907090 [CrossRef] [Google Scholar]
- Z. Chen, C. -X. Wang, X. Hong, J. Thompson, S. Vorobyov, X. Ge, Interference Modeling for Cognitive Radio Networks with Power or Contention Control, IEEE Wireless Communication and Networking Conference, Sydney, NSW, Australia, 1-6 (2010) doi: 10.1109/WCNC.2010.5506443. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.