Open Access
Issue
E3S Web of Conf.
Volume 452, 2023
XV International Online Conference “Improving Farming Productivity and Agroecology – Ecosystem Restoration” (IPFA 2023)
Article Number 04001
Number of page(s) 26
Section Energy
DOI https://doi.org/10.1051/e3sconf/202345204001
Published online 30 November 2023
  1. Botzen, W.; Duijndam, S.; van Beukering, P. World Dev. 137 (2021) https://doi.org/10.1016/j.worlddev.2020.105214 [Google Scholar]
  2. Kumar, N.; Poonia, V.; Gupta, B.B.; Goyal, M.K. Technol. Forecast. Soc. 165 (2021). https://doi.org/10.1016/j.techfore.2020.120532 [CrossRef] [Google Scholar]
  3. Hoegh-Guldberg, O.; Bruno J.F.; Science. 328, 1523–1528 (2010). https://doi.org/10.1126/science.1189930 [CrossRef] [PubMed] [Google Scholar]
  4. Buytaert, W.; Cuesta-Camacho, F.; Tobón, C. Global Ecol. Biogeogr. 20, 19–33 (2011). https://doi.org/10.1111/j.1466-8238.2010.00585.x [CrossRef] [Google Scholar]
  5. Brierley, A.S.; Kingsford, M.J.. Curr. Biol. 19, R602–R614 (2009). https://doi.org/10.1016/j.cub.2009.05.046 [CrossRef] [Google Scholar]
  6. Amin, M.T.; Mahmoud, S.H.; Alazba, A.A. Environ. Earth Sci. 75 (2016) https://doi.org/10.1007/s12665-016-5684-4 [Google Scholar]
  7. Knutti, R.; Sedláček, J. Nat. Clim. Change. 3, 369–373 (2013). https://doi.org/10.1038/nclimate1716 [CrossRef] [Google Scholar]
  8. Chadwick, R.; Boutle, I.; Martin, G.J. Clim., 3803–3822 (2013), https://doi.org/10.1175/JCLI-D-12-00543.1 [Google Scholar]
  9. Liu, W.; Sun, F.J. Hydrometeorol., 977–991 (2017). https://doi.org/10.1175/JHM-D-16-0204.1 [Google Scholar]
  10. Mueller, B.; Seneviratne, S.I. Geophys. Res. Lett. 41, 128–134 (2014) https://doi.org/10.1002/2013GL058055 [CrossRef] [PubMed] [Google Scholar]
  11. Milly, P.C.; Dunne, K.A. Potential evapotranspiration and continental drying. Nat. Clim. Change. 6, 946–949 (2016), https://doi.org/10.1038/nclimate3046 [CrossRef] [Google Scholar]
  12. Haddeland, I.; Heinke J.; Biemans H:, Eisner, S.; et.al., Proc. Natl Acad. Sci. 111, 3251-3256 (2014). https://doi.org/10.1073/pnas.1222475110 [CrossRef] [PubMed] [Google Scholar]
  13. Schewe, J.; Heinke, J.; Gerten, D.; Haddeland, I.; Arnell, N.W.; et.al., Proc. Natl Acad. Sci. 111, 3245-3250 (2014). https://doi.org/10.1073/pnas.1222460110 [CrossRef] [PubMed] [Google Scholar]
  14. Leone, G.; Pagnozzi, M.; Catani, V.; Ventafridda, G.; Esposito, L.; Fiorillo, F. Stoch. Env. Res. Risk. Assess. 35, 345–370 (2021). https://doi.org/10.1007/s00477-020-01908-8 [CrossRef] [Google Scholar]
  15. Gizzi, M.; Mondani, M.; Taddia, G.; Suozzi, E.; Lo Russo, S. Water 14 (2022). https://doi.org/10.3390/w14071004 [Google Scholar]
  16. Zapata-Sierra, A.J.; Zapata-Castillo, L.; Manzano-Agugliaro, F. Environ. Sci. Eur., 34 (2022). https://doi.org/10.1186/s12302-022-00649-5 [CrossRef] [Google Scholar]
  17. Ashbolt, N.J. Toxicology 198, 229–238. )2004) https://doi.org/10.1016/j.tox.2004.01.030 [CrossRef] [PubMed] [Google Scholar]
  18. Sharma, S.; Nagpal, A.K.; Kaur, I.. Chemosphere 227, 179–190 (2019) https://doi.org/10.1016/j.chemosphere.2019.04.009 [CrossRef] [Google Scholar]
  19. Maddocks, A.; Young, R.S.; Reig, P. Ranking the World’s most Water-Stressed Countries in 2040, World Resources Institute (Washington, DC, USA, 2015) [Google Scholar]
  20. Rijsberman, F.R. Agric. Water Manag. 80, 5–22 (2006). https://doi.org/10.1016/j.agwat.2005.07.001 [Google Scholar]
  21. Ludwig, F.; Van Schelting, C.T.; Verhagen, J.; van Kruijt, B.; van Ierland, E.; Dellink, R.; De Bruin, K.; de Bruin, K.; Kabat, P. Climate change impacts on developing countries-EU accountability. Policy Department Economic and Scientific Policy, European Parliamentt (2007) [Google Scholar]
  22. Peskett, L.; Grist, N.; Hedger, M.; Lennartz-Walker, T.; Scholz, I. Climate Change Challenges for EU Development Co-Operation: Emerging Issues. Policy Brief, EDC 2020, 3. Available online:http://www.edc2020.eu/fileadmin/Textdateien/EDC2020_WP03_ClimateChang e_online.pdf (accessed on 5 March 2023) [Google Scholar]
  23. Guan, X.; Zhang, J.; Bao, Z.; Liu, C.; Jin, J.; Wang, G. China. Sci. Total Environ. 798 (2021) https://doi.org/10.1016/j.scitotenv.2021.149277 [CrossRef] [Google Scholar]
  24. Teklay, A.; Dile, Y.T.; Asfaw, D.H.; Bayabil, H.K.; Sisay, K.; Ayalew, A. Dyn. Atmos. Ocean. 97 (2022). https://doi.org/10.1016/j.dynatmoce.2021.101278 [CrossRef] [Google Scholar]
  25. Sun, L.; Wang, Y.-Y.; Zhang, J.-Y.; Yang, Q.-L.; Bao, Z.-X.; Guan, X.-X.; Guan, T.-S.; Chen, X.; Wang, G.-Q. Adv. Clim. Chang. Res. 10, 214–224 (2019). https://doi.org/10.1016/j.accre.2020.02.002 [CrossRef] [Google Scholar]
  26. Parajuli, P.B.; Risal, A. Clim. 9 (2021) https://doi.org/10.3390/cli9110165 [Google Scholar]
  27. Chen, H.; Zhang, W.; Gao, H.; Nie, N. Remote Sens., 10 (2018). https://doi.org/10.3390/rs10030356 [Google Scholar]
  28. Klingelhöfer, D.; Müller, R.; Braun, M.; Brüggmann, D.; Groneberg, D.A. Environ. Sci. Eur. 32, 1–21 (2020). https://doi.org/10.1186/s12302-020-00419-1 [CrossRef] [Google Scholar]
  29. Nesmith, A.A.; Schmitz, C.L.; Machado-Escudero, Y.; Billiot, S.; Forbes, R.A.; Powers, M.C. F.; Buckhoy, N.; Lawrence, L.A. Climate change, ecology, and justice. In: The Intersection of Environmental Justice, Climate Change, Community, and the Ecology of Life. Springer International Publishing, 2021, Cham, 1–12. [Google Scholar]
  30. Besley, T.; Peters, M.A. Educ. Philos. Theory. 2020, 52, 1347–1357. https://doi.org/10.1080/00131857.2019.1684804 [CrossRef] [Google Scholar]
  31. Norval, M.; Cullen, A.P.; de Gruijl, F.R.; Longstreth, J.; Takizawa, Y.; Lucas, R.M.; Noonan, F.P.; van der Leun, J. C. Photoch. & Photobio. Sci. 2007, 6, 232–251. https://doi.org/10.1039/b700018a [CrossRef] [PubMed] [Google Scholar]
  32. Kinney, P.L. Curr. Environ. Health Rep. 2018, 5, 179–186. https://doi.org/10.1007/s40572-018-0188-x [Google Scholar]
  33. IPCC — Intergovernmental Panel on Climate Change. Climate change 2001: Impacts, adaptation and vulnerability. Contribution of working group II to the third assessment report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge: Cambridge University Press, 2001. http://dx.doi.org/10.1017/9781009325844. [Google Scholar]
  34. Matondo, J.I. Assessment of impact and adaptation to climate change and variability on the water sector in Africa. Paper presented at the first African Water Week, 2008, March 26–28, Tunis. [Google Scholar]
  35. Leary, N.; Burton, I.; Adejuwon, J.; Barros, V.; Batimaa, P.; Biagini, B.; Chinvanno, S.; Cruz, R.; Dabi, D.; De Comarmond, A.; Dougherty, B.; Dube, P.; Githeko, A.; Hadid, A.A.; Hellmuth, M.; Kangalawe, R.; Kulkarni, J.; Kumar, M.; Lasco, R.; Mataki, M.; Medany, M.; Mohsen, M.; Nagy, G.; Njie, M.; Nkomo, J.; Nyong, A.; Osman, B.; Sanjak, E.; Seiler, R.; Taylor, M.; Travasso, M.; von Maltitz, G.; Wandiga, S.; Wehbe, M. A stitch in time: General lessons from specific cases. Chapter 1. In: Leary, N.; Adejuwon, J.; Barros, V.; Burton, I.; Kulkarni, J.; Lasco, R. (Eds.), Climate change and adaptation, 2008, 1–27, London: Earthscan. Available online: http://hdl.handle.net/123456789/1677 (accessed on 1 March 2023) [Google Scholar]
  36. Kangalawe, R.Y. M. Clim. Dev. 2016, 191-201 http://dx.doi.org/10.1080/17565529.2016.1139487 [Google Scholar]
  37. Feldbauer, J.; Kneis, D.; Hegewald, T.; Berendonk, T.U.; Petzoldt, Environ. Sci. Eur. 2020, 32, 1–17. [CrossRef] [Google Scholar]
  38. IPCC (2018). Summary for policymakers. In: Masson-Delmotte, V.; Zhai, P.; Pörtner, H.-O.; Roberts, D.; Skea, J.; Shukla, P.R.; Pirani, A.; Moufouma-Okia, W.; Péan, C.; Pidcock, R.; Connors, S.; Matthews, J.B.R.; Chen, Y.; Zhou, X.; Gomis, M.I.; Lonnoy, E.; Maycock, T.; Tignor, M.; Waterfieldet, T. (eds) Global Warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 3-24. [Google Scholar]
  39. IPCC (2014). Climate change 2014: Impacts, adaptation, and vulnerability. Part A: Global and Sectoral Aspects. Contribution of working group II to the fifth assessment report of the Intergovernmental Panel on Climate Change. [Field, D.B.; Barros, V.R.; Dokken, D.J.; Mach, K.J.; Mastrandrea, M.D.; Bilir, T.E.; Chatterjee, M.; Ebi, K.L.; Estrada, Y.O.; Genova, R.C.; Girma, B.; Kissel, E.S; Levy, A.N.; MacCracken, S.; Mastrandrea, P.R.; White, L.L. (Eds.)]. Cambridge, United Kingdom: Cambridge University Press, 2014. [Google Scholar]
  40. Versinia, P.A.; Pougetc, L.; McEnnisd, S.; Custodioe E.; Escale, I. Hydrolog. Sci. J. 2016, 61, 2496–2508. http://dx.doi.org/10.1080/02626667.2016.1154556 [CrossRef] [Google Scholar]
  41. Ma, B.; Hu, C.; Zhang, J.; Ulbricht, M.; Panglisch, S. ACS ES&T Water. 2022, 2, 259-261. https://doi.org/10.1021/acsestwater.2c00004 [Google Scholar]
  42. Bierkens, M.F. P. Water Resour. Res. 2015, 51, 4923–4947. https://doi.org/10.1002/2015WR017173 [CrossRef] [Google Scholar]
  43. Mehran, A.; AghaKouchak, A.; Nakhjiri, N.; Stewardson, M.J.; Peel, M.C.; Phillips, T.J.; Wada, Y.; Ravalico, J.K. Sci. Rep. 2017, 7, 6282. https://doi.org/10.1038/s41598-017-06765-0 [CrossRef] [Google Scholar]
  44. Houghton, J.T.; Meira Filho, L.G.; Callander, B.A.; Harris, N.; Kattenberg, A.; Maskell. K. eds, 1996, Climate Change 1995: The Science of Climate Change. Cambridge University Press, New York, 1996. [Google Scholar]
  45. WMO: Water resources and climatic change: sensitivity of water resources systems to climate change and variability. Geneva: WMO, 1987. [Google Scholar]
  46. IPCC – Intergovernmental Panel on Climate Change. Climate Change and Water. Cambridge and New York: Cambridge University Press, 2008. Available online: https://www.ipcc.ch/site/assets/uploads/2018/03/climate-change-water-en.pdf (accessed on 27 February 2023) [Google Scholar]
  47. IPCC – Intergovernmental Panel on Climate Change. Climate Change 2013: The Physical Science Basis. Cambridge and New York: Cambridge University Press, 2013. Available online: https://www.ipcc.ch/site/assets/uploads/2018/03/WG1AR5_SummaryVolume_FINAL. pdf (accessed on 2 March 2023) [Google Scholar]
  48. IPCC – Intergovernmental Panel on Climate Change. Climate Change 2021: The Physical Science Basis. Cambridge and New York: Cambridge University Press, 2021. Available online: https://report.ipcc.ch/ar6/wg1/IPCC_AR6_WGI_FullReport.pdf (accessed on 12 March 2023) [Google Scholar]
  49. Praskievicz, S.; Chang, H. Phys. Geogr. 2009, 30, 324–337. http://dx.doi.org/10.2747/0272-3646.30.4.324 [CrossRef] [Google Scholar]
  50. Alkama, R.; Kageyama, M.; Ramstein, G.J. Geophys. Res. Atmos. 2010, 115. https://doi.org/10.1029/2009JD013408 [CrossRef] [PubMed] [Google Scholar]
  51. Chang, H.; Praskievicz, S.; Parandvash, H. Int. J. Geosp. Environ. Res. 2014, 1, 1–19. [Google Scholar]
  52. Hanasaki, N.; Fujimori, S.; Yamamoto, T.; Yoshikawa, S.; Masaki, Y.; Hijioka, Y.; Kainuma, M.; Kanamori, Y.; Masui, T.; Takahashi, K.; Kanae, S. Hydrol. Earth Syst. Sc. 2013, 17, 2393–2413. https://doi.org/10.5194/hess-17-2393-2013 [CrossRef] [Google Scholar]
  53. Cramer, W.; Yohe, G.; Auffhammer, M.; Huggel, C.; Leemans, R.; Clim. Change 2014, 6, 13–36. https://doi.org/10.1017/CBO9781107415379.005. [Google Scholar]
  54. Brekke, L.D.; Kiang, J.E.; Olsen, J.R.; Pulwarty, R.S.; Raff, D.A.; Turnipseed, D.P.; Webb, R.S.; White, K.D. Climate change and water resources management—A federal 244 perspective. U.S. Geol. Survey Circ. 2009, 1331. [Google Scholar]
  55. Schnorbus, M.; Werner, A.; Bennett, K.; Hydrol. Proc. 2014, 28, 1170–1189. https://doi.org/10.1002/hyp.v28.3 [CrossRef] [Google Scholar]
  56. Ducharne, A.; Habets, F.; Pagé, C.; Sauquet, E.; Viennot, P.; Déqué, M.; Gascoin, S.; Hachour, A.; Martin, E.; Oudin, L.; Terray, L. Climate change impacts on water resources and hydrological extremes in northern France. XVIII International Conference on Water Resources, 21–24 June 2010, Barcelona, Spain, 2010. [Google Scholar]
  57. Lenderink, G.; Buishand, A.; Van Deursen, W. Hydrol. Earth Syst.Sc. 2007, 11, 1145–1159. https://doi.org/10.5194/hess-11-1145-2007. [CrossRef] [Google Scholar]
  58. World Bank. Renewable internal freshwater resources per capita (cubic meters). Available online: https://data.worldbank.org/indicator/ER.H2O.INTR.PC (accessed on 5 March 2023) [Google Scholar]
  59. World Health Organization. Drinking Water. Fact Sheet, 2016. Available online: https://reliefweb.int/report/world/drinking-water-fact-sheet-reviewed-november-2016 (accessed on 1 March 2023) [Google Scholar]
  60. Al-Zubari, W.K.; El-Sadek, A.A.; Al-Aradi, M.J.; Al-Mahal, H.A. Clim. Risk Manag. 2018, 20, 95–110. https://doi.org/10.1016/j.crm.2018.02.002. [Google Scholar]
  61. Vörösmarty, C.J.; Green, P.; Salisbury, J.; Lammers, R.B. Science 2000, 289, 284–288. https://doi.org/10.1126/science.289.5477.284 [Google Scholar]
  62. Arnell, N.W.; Lloyd-Hughes, B. Clim. Change 2014, 122, 127–140. https://doi.org/10.1007/s10584-013-0948-4 [CrossRef] [Google Scholar]
  63. Alcamo, J.; Martina, F.; Michael, M. Int. Assoc. Sci. Hydrol. Bullet. 2007, 52, 247–275. https://doi.org/10.1623/hysj.52.2.247 [CrossRef] [Google Scholar]
  64. Gerten, D.; Heinke, J.; Hoff, H.; Biemans, H.; Fader, M.; Waha, K.J. Hydrometeorol. 2011, 12, 885–899. https://doi.org/10.1175/2011JHM1328.1 [CrossRef] [Google Scholar]
  65. IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC: Geneva, Switzerland, 2014; pp. 1–151. [Google Scholar]
  66. Tucker, J.; Daoud, M.; Oates, N.; Few, R.; Conway, D.; Mtisi, S.; Matheson, S. Reg. Environ. Chang. 2015, 15, 783–800. https://doi.org/10.1007/s10113-014-0741-6 [CrossRef] [Google Scholar]
  67. Gosling, S.N.; Arnell, N.W. Clim. Change 2016, 134, 371–385. https://doi.org/10.1007/s10584-013-0853-x [CrossRef] [Google Scholar]
  68. Islam, M. J. Econ. Cult. Soc. 2022, 66, 163-179. https://doi.org/10.26650/JECS2021-1056971 [Google Scholar]
  69. Andrade, L.; O’Dwyer, J.; O’Neill, E.; Hynds, P. Environ. Pollut. 2018, 236, 540–549. https://doi.org/10.1016/j.envpol.2018.01.104 [CrossRef] [Google Scholar]
  70. Tong, S.; Ebi, K. Environ. Res. 2019, 174, 9–13. https://doi.org/10.1016/j.envres.2019.04.012 [CrossRef] [Google Scholar]
  71. Abedin, M.A.; Collins, A.E.; Habiba, U.; Shaw, R. Int. J. Disaster Risk Sci. 2019, 10, 28–42. http://dx.doi.org/10.1007/s13753-018-0211-8 [CrossRef] [Google Scholar]
  72. Vineis, P.; Chan, Q.; Khan, A.J. Epidem. Glob. Health. 2011, 1, 5–10. https://doi.org/10.1016/j.jegh.2011.09.001 [CrossRef] [Google Scholar]
  73. World Health Organization. Water, Sanitation and Hygiene Links to Health, Facts and Figures. World Health Organization: Geneva, Switzerland, 2004. Available online: https://apps.who.int/iris/bitstream/handle/10665/69489/factsfigures_2004_eng.pdf?seq uence=1&isAllowed=y (accessed on 9 March 2023) [Google Scholar]
  74. Ahmed, T.; Zounemat-Kermani, M.; Scholz, M. Int. J. Environ. Res. Public Health. 2020, 17. https://doi.org/10.3390/ijerph17228518 [Google Scholar]
  75. Cissé, G. Acta Trop. 2019, 194, 181–188. https://doi.org/10.1016/j.actatropica.2019.03.012 [CrossRef] [Google Scholar]
  76. Thornton, P.K.; Ericksen, P.J.; Herrero, M.; Challinor, A.J. Glob. Chang. Biol. 2014, 20, 13–28. https://doi.org/10.1111/gcb.12581 [Google Scholar]
  77. Lal, M.; Whetton, P.H.; Pittock, A.B.; Chakraborty, B. Atmosph. Ocean Sci. 1998, 9, 673–690. [Google Scholar]
  78. Shawul, A.A.; Chakma, S. Theor. Appl. Climatol. 2020, 140, 635–652. https://doi.org/10.1007/s00704-020-03112-8 [Google Scholar]
  79. Mandal, T.; Das, J.; Sakiur Rahman, A.T. M.; Saha, P. Rainfall insight in Bangladesh and India: Climate Change and Environmental Perspective, In book: Habitat, Ecology and Ekistics, Advances in Asian Human-Environmental Research: case studies of human-environment interactions in India, Rukhsana, Haldar, A.; Alam, A.; Satpati, L. (Ed.), Springer, 2021, 53-74. http://dx.doi.org/10.1007/978-3-030-49115-4_3 [Google Scholar]
  80. Kareem, S.L.; Al-Mamoori, S.K.; Al-Maliki, L.A.; Al-Dulaimi, M.Q.; Al-Ansari, N.; Fegade, S.L. Al-Naja city as a case study, Cogent Eng. 2021, 8. https://doi.org/10.1080/23311916.2020.1863171 [Google Scholar]
  81. Das, J.; Goyal, M.K. Current trends and projections of water resources under climate change in Ganga river basin. In: Chauhan MS, Ojha CSP (eds) the Ganga River basin: a hydrometeorological approach. Publisher: Springer, 2021, 233–256. https://doi.org/10.1007/978-3-030-60869-9_16 [CrossRef] [Google Scholar]
  82. Kulp, S.A.; Strauss, B.H. Nat. Commun. 2019, 10. https://doi.org/10.1038/s41467-019-12808-z [Google Scholar]
  83. Sivakumar, B. Stoch. Environ. Res. Risk. Assess. 2011, 25, 583–600. http://dx.doi.org/10.1007/s00477-010-0423-y [CrossRef] [Google Scholar]
  84. Wang, G.; Zhang, J.; He, R.; Liu, C.; Ma, T.; Bao, Z.; Liu, Y. Stoch. Environ. Res. Risk. Assess. 2016, 31, 1011–1021. https://doi.org/10.1007/s00477-016-1218-6. [Google Scholar]
  85. Wang, Y.; Xie, Z.; Jia, B.; Wang, L.; Li, R.; Liu, B.; Chen, S.; Xie, J.; Qin, P.J. Geophys. Res. Atmos. 2020, 125. https://doi.org/10.1029/2019JD032001 [Google Scholar]
  86. Konapala, G.; Mishra, A.K.; Wada, Y.; Mann M. E. Nat. Commun., 2020, 11, 3044. https://doi.org/10.1038/s41467-020-16757-w [CrossRef] [Google Scholar]
  87. Salimi, S.; Almuktar, S.A.A.A.N.; Scholz, M.J. Environ. Manage. 2021, 286. https://doi.org/10.1016/j.jenvman.2021.112160 [Google Scholar]
  88. Arnell, N.; Halliday, S.; Battarbee, R.W.; Skeffington, R.; Wade, A. Prog. Phys. Geog. 2015, 39. https://doi.org/10.1177/0309133314560369 [Google Scholar]
  89. Kiguchi, M.; Takata, K.; Hanasaki, N.; Archevarahuprok, B.; Champathong, A.; Ikoma, E.; Jaikaeo, Ch.; Kaewrueng, S.; Kanae, Sh.; Kazama, S. Environ. Res. Lett. 2020, 16. https://doi.org/10.1088/1748-9326/abce80 [Google Scholar]
  90. Kuthe, A.; Keller, L.; Körfgen, A.; Stötter, H.J. Environ. Educ. 2019, 50, 172–182. https://doi.org/10.1080/00958964.2019.1598927 [CrossRef] [Google Scholar]
  91. Cannon, C.; Gotham, K.F.; Lauve-Moon, K.; Powers, B. Clim. Risk Manag. 2020, 27. https://doi.org/10.1016/j.crm.2019.100210. [Google Scholar]
  92. Al-Maliki, L.A.; Al-Mamoori, S.K.; Jasim, I.A.; El-Tawel, K.; Al‑Ansari, N.. Arab. J. Geosci 2022, 15, 503. https://doi.org/10.1007/s12517-022-09695-y [CrossRef] [Google Scholar]
  93. Paerregaard, K. Environ. Commun. 2020, 14, 112–125. https://doi.org/10.1080/17524032.2019.1626754 [CrossRef] [Google Scholar]
  94. Frederick, K.D.; Schwarz, G.E. J. Am. Water Resour. Assoc. 1999, 35, 1563–1583. https://doi.org/10.1111/j.1752-1688.1999.tb04238.x [CrossRef] [Google Scholar]
  95. Hurd, B.; Callaway, M.; Smith, J.B.; Kirshen, P. Economic effects of climate change on U.S. water resources. Chapter 6. In: Mendelsohn R, Neumann JE (eds) The impact of climate change on the United States economy. Cambridge University Press, Cambridge. 1999, 133-177. https://doi.org/10.1017/CBO9780511573149 [Google Scholar]
  96. Booker, J.F. Water Resour. Bull. 1995, 31, 889–906. https://doi.org/10.1111/j.1752-1688.1995.tb03409.x [CrossRef] [Google Scholar]
  97. Cai, X.; Rosegrant, M. Water Resour. Res. 2004, 40. https://doi.org/10.1029/2003WR002488 [Google Scholar]
  98. Cai, X.; Ringler, C.; Rosegrant, M. Modeling Water Resources Management at the Basin Level: Methodology and Application to the Maipo River Basin; International Food Policy Research Institute: Washington, DC, USA, 2006. http://dx.doi.org/10.2499/0896291529RR149 [Google Scholar]
  99. Du, P.; Xu, M.; Li, R. Peer J. 2021, 9.https://doi.org/10.7717/peerj.12201. [Google Scholar]
  100. Hoekstra, A.Y. Chapter 7 - The Water Footprint of Industry, Editor(s): Klemeš, J.J.Assessing and Measuring Environmental Impact and Sustainability, Butterworth-Heinemann. 2015, 221–254. https://doi.org/10.1016/B978-0-12-799968-5.00007-5 [Google Scholar]
  101. Hoekstra, A.Y.; Mekonnen, M.M. Proc. Natl Acad. Sci. USA. 2012, 109, 3232–3237. https://doi.org/10.1073/pnas.1109936109 [Google Scholar]
  102. Dolan F.; Lamontagne J.; Link R.; Hejazi, M.; Reed, P.; Edmonds, J. Nat. Comm. 2021, 12. https://doi.org/10.1038/s41467-021-22194-0 [Google Scholar]
  103. Papakostas, K.; Mavromatis, T.; Kyriakis, N. Renew. Energy. 2010, 35, 1376–1379. https://doi.org/10.1016/j.renene.2009.11.012 [CrossRef] [Google Scholar]
  104. Watson, R.T.; Zinyowera, M.C.; Moss, R.H. (Eds.), 1997. The regional impacts of climate change: an assessment of vulnerability, A special report of the IPCC Working Group III, Cambridge University Press, Environment and Development Economics, 1998. Available online: https://www.ipcc.ch/site/assets/uploads/2020/11/The-Regional-Impact.pdf (accessed on 9 March 2023) [Google Scholar]
  105. Arnell, N.W. Global Environmental Change. 1999, 9, 5–23. https://doi.org/10.1016/S0959-3780(98)00015-6 [CrossRef] [Google Scholar]
  106. Parry, M.L. (ed.). Assessment of the Potential Effects and Adaptations for Climate Change in Europe: The Europe ACACIA Project. Jackson Environment Institute, University of East Anglia, Norwich, UK, 2000, 1-320. [Google Scholar]
  107. Henrichs, T.; Lehner, B.; Alcamo, J. Integrated Assessment. 2002, 3, 15–29. https://doi.org/10.1076/iaij.3.1.15.7406 [CrossRef] [Google Scholar]
  108. Lehner, B.; Döll, P.; Alcamo, J. et al. Climatic Change. 2006, 75, 273–299. http://dx.doi.org/10.1007/s10584-006-6338-4 [CrossRef] [Google Scholar]
  109. Van Vliet, M.; Wiberg, D.; Leduc, S.; Riahi, K. Nature Clim. Change. 2016, 6, 375–380. https://doi.org/10.1038/nclimate2903 [CrossRef] [Google Scholar]
  110. Van Vliet, M.T.H.; Vögele, S.; Rübbelke, D. Environ. Res. Lett. 2013, 8. [Google Scholar]
  111. Lehnera, B.; Czischb, G.; Vassoloa, S. Energ. Policy. 2005, 33, 839–855. https://doi.org/10.1016/j.enpol.2003.10.018 [CrossRef] [Google Scholar]
  112. Schaeffer, R.; Szklo, A.S.; Pereira de Lucena, A.F.; Moreira Cesar Borba, B.S.; Pupo Nogueira, L.P.; Fleming, F.P.; Troccoli, A.; Harrison, M.; Boulahya, M.S. EEnergy. 2012, 38, 1–12. https://doi.org/10.1016/j.energy.2011.11.056 [Google Scholar]
  113. Turner, S.W.D.; Ng, J.Y.; Galelli, S. Sci. Total Environ. 2017, 590–591, 663–675. https://doi.org/10.1016/j.scitotenv.2017.03.022 [CrossRef] [Google Scholar]
  114. Tobin, I.; Greuell, W.; Jerez, S.; Ludwig, F.; Vautard, R.; Van Vliet, M.T.H.; Breón, F.M.. Environ. Res. Lett. 2018, 13. [Google Scholar]
  115. Solaun, K.; Cerdá, E. Energies. 2017, 10. https://doi.org/10.3390/en10091343 [Google Scholar]
  116. Sample, J.E.; Duncan, N.; Ferguson, M,; Cooksley, S. Renew. Sust. Energ. Rev. 2015, 52, 111-122. https://doi.org/10.1016/j.rser.2015.07.071 [CrossRef] [Google Scholar]
  117. Wagner, T.; Themeßl, M.; Schüppel, A.; Gobiet, A.; Stigler, H.; Birk, S.. Environ. Earth Sci. 2017, 76, 4. https://doi.org/10.1007/s12665-016-6318-6 [CrossRef] [Google Scholar]
  118. Hamududu, B.; Killingtveit, A. Energies. 2012, 5, 305-322. https://doi.org/10.3390/en5020305 [CrossRef] [Google Scholar]
  119. Tarroja, B.; AghaKouchak, A.; Samuelsen, S. Energy. 2016, 111, 295–305. https://doi.org/10.1016/j.energy.2016.05.131 [CrossRef] [Google Scholar]
  120. Burić, D.; Doderović, M. Int. J. Climatol. 2021, 41. https://doi.org/10.1002/joc.6671 [Google Scholar]
  121. Montenegro Third National Communication on Climate Change, Ministry of Sustainable Development and Tourism (MSDT), United Nations Development Programme (UNDP) in Montenegro. 2020. Available online: https://www4.unfccc.int/sites/SubmissionsStaging/NationalReports/Documents/859601 2_Montenegro-NC3-1-TNC%20-%20MNE.pdf (accessed on 2 March 2023) [Google Scholar]
  122. Tošić, R.; Lovrić N.; Dragićević, S.; Manojlović S. ] Carpathian J. Earth Environ. Sci. 2018, 13, 369 – 382. http://dx.doi.org/10.26471/cjees/2018/013/032 [CrossRef] [Google Scholar]
  123. EM-DAT, The International Disaster Database, 2019. Available online: https://www.emdat.be/database (accessed on 12 March 2023) [Google Scholar]
  124. Food and Agriculture Organization of the United Nations. FAO Publications, 2015. Available online: https://www.fao.org/3/i5056e/i5056e.pdf (accessed on 10 March 2023) [Google Scholar]
  125. Ministry of Sustainable Development and Tourism and United Nations Development Programme. Montenegro Third National Communication on Climate Change, 2020. Available online: https://www4.unfccc.int/sites/SubmissionsStaging/NationalReports/Documents/859601 2_Montenegro-NC3-1-TNC%20-%20MNE.pdf (accessed on 2 March 2023) [Google Scholar]
  126. Intergovernmental Panel on Climate Change. IPCC Special Report Emissions, WMO and UNEP, 2000. https://www.ipcc.ch/site/assets/uploads/2018/03/sres-en.pdf [Google Scholar]
  127. Callaway, J.M.; Kašćelan, S.; Marković, M. The Economic Impacts of Climate Change in Montenegro: A First Look. Prepared for the Office of UNDP Montenegro. 2010. https://www.undp.org/montenegro/publications/economic-impact-climate-change-montenegro (accessed on 3 March 2023) [Google Scholar]
  128. Swiss Re Institute. The Economics of Climate Change: No Action not an Option. 2021.Available online: https://www.swissre.com/dam/jcr:e73ee7c3-7f83-4c17-a2b8-8ef23a8d3312/swiss-re-institute-expertise-publication-economics-of-climate-change.pdf (accessed on 5 March 2023) [Google Scholar]
  129. Kahn, M.E.; Mohaddes, K.; Ryan, N.C. Ng.; Pesaran, M.H.; Raissi, M.; Yang, J.C. Long-Term Macroeconomic Effects of Climate Change: A Cross-Country Analysis, International Monetary Fund, 2019. Available online: https://www.imf.org/en/Publications/WP/Issues/2019/10/11/Long-Term-Macroeconomic-Effects-of-Climate-Change-A-Cross-Country-Analysis-48691 (accessed on 5 March 2023) [Google Scholar]
  130. World Energy Outlook 2021, International Energy Agency. 2021. Available online: https://iea.blob.core.windows.net/assets/4ed140c1-c3f3-4fd9-acae-789a4e14a23c/WorldEnergyOutlook2021.pdf (accessed on 7 March 2023) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.