Open Access
Issue
E3S Web Conf.
Volume 455, 2023
First International Conference on Green Energy, Environmental Engineering and Sustainable Technologies 2023 (ICGEST 2023)
Article Number 02015
Number of page(s) 8
Section Renewable & Sustainable Energy Technology
DOI https://doi.org/10.1051/e3sconf/202345502015
Published online 05 December 2023
  1. E. Carter et al., “Household transitions to clean energy in a multiprovincial cohort study in China,” Nat. Sustain., vol. 3, no. 1, pp. 42–50 Nov. (2019), DOI: 10.1038/s41893-019-0432-x. [CrossRef] [Google Scholar]
  2. M.-T. Huang and P.-M. Zhai, “Achieving Paris Agreement temperature goals requires carbon neutrality by middle century with far-reaching transitions in the whole society,” Adv. Clim. Chang. Res., vol. 12, no. 2, pp. 281–286 Apr. (2021), DOI: 10.1016/j.accre.2021.03.004. [CrossRef] [Google Scholar]
  3. N. H. El-Farra and P.D. Christofides, “Special issue on ‘control and optimization of renewable energy systems,’” Renew. Energy, vol. 100, pp. 1–2 Jan. (2017), DOI: 10.1016/j.renene.2016.09.008. [CrossRef] [Google Scholar]
  4. L. Noel, “The hidden economic benefits of large-scale renewable energy deployment: Integrating heat, electricity and vehicle systems,” Energy Res. Soc. Sci., vol. 26, pp. 54–59 Apr. (2017), DOI: 10.1016/j.erss.2017.01.019. [CrossRef] [Google Scholar]
  5. Y. Hua, M. Oliphant, and E. J. Hu, “Development of renewable energy in Australia and China: A comparison of policies and status,” Renew. Energy, vol. 85, pp. 1044–1051 Jan. (2016), DOI: 10.1016/j.renene.2015.07.060. [CrossRef] [Google Scholar]
  6. A. Trivedi, V. Trivedi, K. K. Pandey, and O. Chichi, “An interpretive model to assess the barriers to ocean energy toward blue economic development in India,” Renew. Energy, vol. 211, pp. 822–830 Jul. (2023), DOI: 10.1016/j.renene.2023.05.046. [CrossRef] [Google Scholar]
  7. M. Melikoglu, “Current status and future of ocean energy sources: A global review,” Ocean Eng., vol. 148, pp. 563–573 Jan. (2018), DOI: 10.1016/j.oceaneng.2017.11.045. [CrossRef] [Google Scholar]
  8. H. Ishaq and I. Dincer, “A comparative evaluation of OTEC, solar and wind energy based systems for clean hydrogen production,” J. Clean. Prod., vol. 246, p. 118736 Feb. (2020), DOI: 10.1016/j.jclepro.2019.118736. [CrossRef] [Google Scholar]
  9. C. Acar and I. Dincer, “Review and evaluation of hydrogen production options for better environment,” J. Clean. Prod., vol. 218, pp. 835–849 May (2019), DOI: 10.1016/j.jclepro.2019.02.046. [CrossRef] [Google Scholar]
  10. B. Zhang, S.-X. Zhang, R. Yao, Y.-H. Wu, and J.-S. Qiu, “Progress and prospects of hydrogen production: Opportunities and challenges,” J. Electron. Sci. Technol., vol. 19, no. 2, p. 100080, Jun. (2021), DOI: 10.1016/j.jnlest.2021.100080. [CrossRef] [Google Scholar]
  11. R. Rapier, “Estimating The Carbon Footprint Of Hydrogen Production,” Forbes, 2020. https://www.forbes.com/sites/rrapier/2020/06/06/estimating-the-carbon-footprint-of-hydrogen-production/?sh=50254c2a24bd (accessed Jun. 10, 2023). [Google Scholar]
  12. A. Nicita, G. Maggio, A. P. F. Andaloro, and G. Squadrito, “Green hydrogen as feedstock: Financial analysis of a photovoltaic-powered electrolysis plant,” Int. J. Hydrogen Energy, vol. 45, no. 20, pp. 11395–11408 Apr. (2020), DOI: 10.1016/j.ijhydene.2020.02.062. [CrossRef] [Google Scholar]
  13. G. Maggio, A. Nicita, and G. Squadrito, “How the hydrogen production from RES could change energy and fuel markets: A review of recent literature,” Int. J. Hydrogen Energy, vol. 44, no. 23, pp. 11371–11384 May (2019), DOI: 10.1016/j.ijhydene.2019.03.121. [CrossRef] [Google Scholar]
  14. IEA, “Global Hydrogen Review,” 2022. [Online]. Available: https://iea.blob.core.windows.net/assets/c5bc75b1-9e4d-460d-9056-6e8e626a11c4/GlobalHydrogenReview2022.pdf. [Google Scholar]
  15. S. Bhagavathy and J. Thakur, “Green Hydrogen: Challenges for Commercialization,” IEEE Smart Grid. (2021). [Google Scholar]
  16. A. Awasthi and G. Kannan, “Green supplier development program selection using NGT and VIKOR under fuzzy environment,” Comput. Ind. Eng., vol. 91, pp. 100–108, (2016), DOI: 10.1016/j.cie.2015.11.011. [CrossRef] [Google Scholar]
  17. C. W. Hsu, T. C. Kuo, S. H. Chen, and A. H. Hu, “Using DEMATEL to develop a carbon management model of supplier selection in green supply chain management,” J. Clean. Prod., vol. 56, pp. 164–172, (2013), DOI: 10.1016/jjclepro.2011.09.012. [CrossRef] [Google Scholar]
  18. A. Trivedi, “A multi-criteria decision approach based on DEMATEL to assess determinants of shelter site selection in disaster response,” Int. J. Disaster Risk Reduct., vol. 31, pp. 722–728, Oct. (2018), DOI: 10.1016/j.ijdrr.2018.07.019. [CrossRef] [Google Scholar]
  19. J. I. Shieh, H. H. Wu, and K. K. Huang, “A DEMATEL method in identifying key success factors of hospital service quality,” Knowledge-Based Syst., vol. 23, no. 3, pp. 277–282, (2010), DOI: 10.1016/j.knosys.2010.01.013. [CrossRef] [Google Scholar]
  20. V. Trivedi, K. K. Pandey, and A. Trivedi, “Analyzing the challenges of e-waste management practices in India during COVID-19,” Manag. Environ. Qual. An Int. J., vol. 33, no. 6, pp. 1611–1628 Sep. (2022), DOI: 10.1108/MEQ-12-2021-0273. [CrossRef] [Google Scholar]
  21. T. Banerjee, A. Trivedi, G. M. Sharma, M. Gharib, and S. S. Hameed, “Analyzing organizational barriers towards building postpandemic supply chain resilience in Indian MSMEs: a grey-DEMATEL approach,” Benchmarking An Int. J., vol. 30, no. 6, pp. 1966–1992 Jul. (2023), DOI: 10.1108/BIJ-11-2021-0677. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.