Open Access
Issue
E3S Web Conf.
Volume 455, 2023
First International Conference on Green Energy, Environmental Engineering and Sustainable Technologies 2023 (ICGEST 2023)
Article Number 03008
Number of page(s) 12
Section Sustainable Technology in Construction
DOI https://doi.org/10.1051/e3sconf/202345503008
Published online 05 December 2023
  1. A. G. Richard, P. Luis, Raes, Dirk and S. Martin. FAO Irrigation and Drainage Paper Crop. Irrigation and Drainage (56): 300 (1998). [Google Scholar]
  2. Sogaard, Henrik, and H. Segaard. Estimation of the Surface Energy Balance in the Sahelian Zone of Western Africa, Geografisk Tidsskrift-Danish Journal of Geography, 88:1, 108–115, (2013). [Google Scholar]
  3. Anapalli, S. Saseendran, R. Timothy, K.N. Reddy, H. Prasanna. Gowda, S. Ruixiu, D.K. Fisher, J. Moorhead, and G. Marek. Application of an Energy Balance Method for Estimating Evapotranspiration in Cropping Systems. Agricultural Water Management, 204, 107–117. (2018) [CrossRef] [Google Scholar]
  4. M. Menenti and B. J. Choudhury, Parameterization of Land Surface Evaporation by Means of Location Dependent Potential Evaporation and Surface Temperature Range. Proceedings of IAHS Conference on Land Surface Processes 212, 561–568. (1993) [Google Scholar]
  5. Bastiaanssen, G. M. Bastiaanssen, H. Pelgrum, J. Wang, Y. Ma, J.F. Moreno, G.J. Roerink and T. Van Der Wal. A Remote Sensing Surface Energy Balance Algorithm for Land (SEBAL) Formulation. Journal of Hydrology (1-4), 213–229. (1998) [CrossRef] [Google Scholar]
  6. Roerink, G. Z. Su, and M. Menenti. S-SEBI: A Simple Remote Sensing Algorithm to Estimate the Surface Energy Balance. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere 25 (2), 147–157. (2000). [CrossRef] [Google Scholar]
  7. Z. Su. The Surface Energy Balance System (SEBS) for Estimation of Turbulent Heat Fluxes. Hydrology and Earth System Sciences 6, 85–100. (2002). [CrossRef] [Google Scholar]
  8. A. G. Richard, M. Tasumi, A. Morse, R. Trezza, L. James. Wright, W. Bastiaanssen, W. Kramber, I. Lorite, and W. Robison. Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)— Applications. Journal of Irrigation and Drainage Engineering 133 (4), 395–406. (2007). [CrossRef] [Google Scholar]
  9. M. Castelli, M. C. Anderson, Y. Yang, G. Wohlfahrt, G. Bertoldi, G. Niedrist, A. Hammerle, P. Zhao, M. Zebisch, and C. Notarnicola. Two-Source Energy Balance Modeling of Evapotranspiration in Alpine Grasslands. Remote Sensing of Environment 209, 327–342. (2018). [CrossRef] [Google Scholar]
  10. E. Aymn. ReSET-Raster: Surface Energy Balance Model for Calculating Evapotranspiration Using a Raster Approach. Journal of Irrigation and Drainage Engineering. 137 (4), 203–210. (2011). [CrossRef] [Google Scholar]
  11. W. G. Bastiaanssen, G.M. Bastiaanssen, H. Pelgrum, J. Wang, Y. Ma, J.F.F. Moreno, G.J.J. Roerink, and T. Van Der Wal. A Remote Sensing Surface Energy Balance Algorithm for Land (SEBAL) Validation. Journal of Hydrology, 212-213 213–229. (1998). [CrossRef] [Google Scholar]
  12. L. A. Yuei and S. Kumar. Evapotranspiration Estimation with Remote Sensing and Various Surface Energy Balance Algorithms-a Review. Energies 7 (5), 2821–2849. (2014). [CrossRef] [Google Scholar]
  13. U.S. Geological Survey (USGS). Landsat 8 Fact Sheet. Fact Sheet 2013-3060, 3-6. (2013). [Google Scholar]
  14. Tasumi, Masahiro, R.G. Allen, and R. Trezza. At-Surface Reflectance and Albedo from Satellite for Operational Calculation of Land Surface Energy Balance. Journal of Hydrologic Engineering, 13, 51–63. (2008). [CrossRef] [Google Scholar]
  15. Guha, Subhanil, H. Govil, A. Dey, and N. Gill. Analytical Study of Land Surface Temperature with NDVI and NDBI Using Landsat 8 OLI and TIRS Data in Florence and Naples City, Italy. European Journal of Remote Sensing 51 (1), 667–678. (2018) [CrossRef] [Google Scholar]
  16. Y. Xiaolei, X. Guo, and Z. Wu. Land Surface Temperature Retrieval from Landsat 8 TIRS-Comparison between Radiative Transfer Equation-Based Method, Split Window Algorithm and Single Channel Method. Remote Sensing. 6(10), 98299852. (2014). [Google Scholar]
  17. Z. A. Samani, D. V. Tran, M. Bleiweiss, and R. Skaggs. Estimating Daily and 24- Hour Net Radiation for All Sky Conditions through Remote Sensing and Climatic Data. Journal of Irrigation and Drainage Engineering, 139, 3. (2013). [Google Scholar]
  18. Burakowski, Elizabeth, A. Tawfik, A. Ouimette, L. Lepine, K. Novick, S. Ollinger, C. Zarzycki, and G. Bonan. The Role of Surface Roughness, Albedo, and Bowen Ratio on Ecosystem Energy Balance in the Eastern United States, Agricultural and Forest Meteorology. 249, 367–376. (2018). [CrossRef] [Google Scholar]
  19. P. M. Seevers and R. W. Ottmann. Evapotranspiration Estimation Using a Normalized Difference Vegetation Index Transformation of Satellite Data. Hydrological Sciences Journal 39 (4), 333–345. (1994) [CrossRef] [Google Scholar]
  20. Ning, Jicai, Z. Gao, R. Meng, F. Xu, and M. Gao. Analysis of Relationships between Land Surface Temperature and Land Use Changes in the Yellow River Delta. Frontiers of Earth Science 12 (2), 444–456. (2018). [CrossRef] [Google Scholar]
  21. Zeng, Fanxing and N. Gao. Use of an Energy Balance Model for Studying Urban Surface Temperature at Microscale. Procedia Engineering 205, 2956–2966. (2017). [CrossRef] [Google Scholar]
  22. Sun, Zhongping, B. Wei, W. Su, W. Shen, C. Wang, D. You, and Z. Liu. Evapotranspiration Estimation Based on the SEBAL Model in the Nansi Lake Wetland of China. Mathematical and Computer Modelling 54 (3-4): 1086–1092. (2011). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.