Open Access
Issue
E3S Web Conf.
Volume 455, 2023
First International Conference on Green Energy, Environmental Engineering and Sustainable Technologies 2023 (ICGEST 2023)
Article Number 03012
Number of page(s) 12
Section Sustainable Technology in Construction
DOI https://doi.org/10.1051/e3sconf/202345503012
Published online 05 December 2023
  1. R. Siddique, G. de Schütter, A. Noumowe, Effect of used-foundry sand on the mechanical properties of concrete, Constr. Build. Mater. 23-2 (2009) 976–980. https://doi.org/10.1016/j.conbuildmat.2008.05.005. [CrossRef] [Google Scholar]
  2. H. M. Basar, N. D. Aksoy, The effect of waste foundry sand (WFS) as partial replacement of sand on the mechanical, leaching and micro-structural characteristics of ready-mixed concrete, Constr. Build. Mater. 35 (2012) 508–515. https://doi.org/10.1016/j.conbuildmat.2012.04.078. [CrossRef] [Google Scholar]
  3. B. Bhardwaj, P. Kumar, Waste foundry sand in concrete: A review, Constr. Build. Mater. 156 (2017) 661–674. https://doi.org/10.1016/j.conbuildmat.2017.09.010. [CrossRef] [Google Scholar]
  4. N. Doğan-Sağlamtimur, Waste Foundry Sand Usage for Building Material Production: A First Geopolymer Record in Material Reuse, Adv. Civ. Eng. Article ID 1927135 (2018) 10 pages. https://doi.org/10.1155/2018/1927135. [Google Scholar]
  5. M. Manjunatha, S. G. K. Rakshith, Use of waste foundry sand as fine aggregates for structural concrete - A review, J. Eng. Des. Technol. 20-6 (2021), 1468–1481. https://doi.org/10.1108/JEDT-09-2020-0390. [Google Scholar]
  6. P.P.O.L. Dyer, M.G. de Lima, L.M.G. Klinsky, S.A. Silva, G.J.L. Coppio, Environmental characterization of Foundry Waste Sand (WFS) in hot mix asphalt (HMA) mixtures, Constr. Build. Mater. 171 (2018) 474–484. https://doi.org/10.1016/j.conbuildmat.2018.03.151. [CrossRef] [Google Scholar]
  7. U. S. Department of Transportation, Federal Highway Administration, (USEPA), Foundry sand facts for Civil Engineers, (2012), FHWA-IF-04-004. PP-5 [Google Scholar]
  8. K. Major-Gabryś, Environmentally Friendly Foundry Molding and Core Sands. J. of Materi Eng and Perform 28 (2019) 3905–3911. https://doi.org/10.1007/s11665-019-03947-x [CrossRef] [Google Scholar]
  9. J.T. Fox, F. S. Cannon, N. R. Brown, H. Huang, J. C. Furness, Comparison of a new, green foundry binder with conventional foundry binders, Int. J. Adhes. Adhes. 34 (2012) 38–45. https://doi.org/10.1016/j.ijadhadh.2011.11.011. [CrossRef] [Google Scholar]
  10. Y. A. Owusu, Physical-chemistry study of sodium silicate as a foundry sand binder, Adv. Colloid Interface Sci. 18, 1-2 (1982) 57–91. https://doi.org/10.1016/0001-8686(82)85031-8. [CrossRef] [Google Scholar]
  11. Z.T. Fan, N.Y. Huang and X.P. Dong, In house reuse and reclamation of used foundry sands with sodium silicate binder, Int. J. Cast. Metal. Res., 17-1 (2004) 51–56. https://doi.org/10.1179/136404604225020551. [CrossRef] [Google Scholar]
  12. S. Lucas, M. T. Tognonvi, J-L. Gelet, J. Soro and S. Rossignol, Interactions between silica sand and sodium silicate solution during consolidation process, J. Non-Cryst. Solids., 357-4 (2011) 1310–1318. 10.1016/j.jnoncrysol.2010.12.016. [CrossRef] [Google Scholar]
  13. Q. Z. Sun, H. Du, P. Q. Zhang, Z. K. Zhao and J. G. Yan, Study of Thermal and Wet Reclamation Technology of Used Sodium Silicate Bonded Sand. Adv. Mat. Res., 10041005 (2014) 1008–1012. https://doi.org/10.4028/www.scientific.net/AMR.1004-1005.1008. [Google Scholar]
  14. S. Balbay, Recycling of waste foundry sands by chemical washing method, China Foundry, 16 (2019) 141–146. https://doi.org/10.1007/s41230-019-8144-4. [CrossRef] [Google Scholar]
  15. M. F. Gmati, K. Brahim, I. Khattech and M. Jemal, Thermochemistry and kinetics of silica dissolution in NaOH solutions: Effect of the alkali concentration, Thermochim. Acta., 594 (2014) 58–67. https://doi.org/10.1016/j.tca.2014.09.003. [CrossRef] [Google Scholar]
  16. C. J. Horwell, B. J. Williamson, K. Donaldson, J. S. Le Blond, D. E. Damby, L. Bowen, The structure of volcanic cristobalite in relation to its toxicity; relevance for the variable crystalline silica hazard, Part. Fibre. Toxicol. 9:44 (2012). https://doi.org/10.1186/1743-8977-9-44. [CrossRef] [Google Scholar]
  17. J. Theil, The thermal expansion of chemically bonded silica sands, American foundry society proceedings, Schaumburg, IL USA. 11-116. (2011). [Google Scholar]
  18. A. Kazemia, M.A. Faghihi-Sani and H.R. Alizadeh, Investigation on cristobalite crystallization in silica-based ceramic cores for investment casting, J. Eur. Ceram. Soc. 33 (2013) 3397–3402. https://doi.org/10.1016/jjeurceramsoc.2013.06.025. [CrossRef] [Google Scholar]
  19. L. Pagliari, M. Dapiaggi, A. Pavese and F. Francescon, A kinetic study of the quartzcristobalite phase transition, J. Eur. Ceram. Soc. 33 (2013) 3403–3410. https://doi.org/10.1016/jjeurceramsoc.2013.06.014. [CrossRef] [Google Scholar]
  20. IS 4031(Part 11):1988, Methods of physical tests for hydraulic cement. [Google Scholar]
  21. IS 4031(Part 5):1988, Methods of physical tests for hydraulic cement. [Google Scholar]
  22. IS 383:1970, Specification for coarse and fine aggregates from natural sources for concrete. [Google Scholar]
  23. IS 2386(Part 3):1963, Methods of test for aggregates for concrete: Part 3 Specific gravity, density, voids, absorption and bulking. [Google Scholar]
  24. IS 10262:2019, Guidelines for concrete mix proportioning. [Google Scholar]
  25. IS 1199:1959, Methods of sampling and analysis of concrete. [Google Scholar]
  26. IS 516:1959, Method of test for strength of concrete. [Google Scholar]
  27. IS 13311(Part 1):1992, Methods of non-destructive testing of concrete: Part 1 Ultrasonic pulse velocity. [Google Scholar]
  28. IS 13311(Part 2):1992, Methods of non-destructive testing of concrete: Part 2 Rebound hammer. [Google Scholar]
  29. ASTM C642, Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. [Google Scholar]
  30. ASTM C1202, Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration. [Google Scholar]
  31. W. Ashraf, J. Olek, V. Atakan, A Comparative Study of the Reactivity of Calcium Silicates during Hydration and Carbonation Reactions, 14th International Congress on the Chemistry of Cement (ICCC 2015) 13~16 October 2015, Beijing, China [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.