Open Access
Issue
E3S Web Conf.
Volume 455, 2023
First International Conference on Green Energy, Environmental Engineering and Sustainable Technologies 2023 (ICGEST 2023)
Article Number 03011
Number of page(s) 7
Section Sustainable Technology in Construction
DOI https://doi.org/10.1051/e3sconf/202345503011
Published online 05 December 2023
  1. Adaska, W. S., Amon, J. A., Fox, T. A., Boone, R. L., Grabow, K. R., Brewer, W. E., Green, D. J., Casias, T. J., Hook, W., Crouch, C., Krell, W. C., Fernandez, J. E., & Kolbeck, H.J. (1994). ACI229R-94 Controlled Low Strength Materials (CLSM). [Google Scholar]
  2. Chompoorat, T., Likitlersuang, S., & Jongvivatsakul, P. (2018). The Performance of Controlled Low-strength Material Base Supporting a High-volume Asphalt Pavement. KSCE Journal of Civil Engineering, 22(6), 2055–2063. https://doi.org/10.1007/s12205-018-1527-z [CrossRef] [Google Scholar]
  3. Das, S. K., Mahamaya, M., & Reddy, K. R. (2020). Coal mine overburden soft shale as a controlled low strength material. International Journal of Mining, Reclamation and Environment, 34(10), 725–747. https://doi.org/10.1080/17480930.2020.1721043 [CrossRef] [Google Scholar]
  4. Hunag, L. J., Wang, H. Y., & Wu, Y.W. (2016). Properties of the mechanical in controlled low-strength rubber lightweight aggregate concrete (C’LSRLC’j. Construction and Building Materials, 112, 1054–1058. https://doi.org/10.1016/j.conbuildmat.2016.03.016 [CrossRef] [Google Scholar]
  5. Kaliyavaradhan, S. K., Ling, T. C., Guo, M. Z., & Mo, K.H. (2019). Waste resources recycling in controlled low-strength material (C’LSM): A critical review on plastic properties. In Journal of Environmental Management (Vol. 241, pp. 383–396). Academic Press. https://doi.org/10.1016/jjenvman.2019.03.017 [CrossRef] [Google Scholar]
  6. Kuo, W. Ten, Wang, H.Y., Shu, C.Y., & Su, D.S. (2013). Engineering properties of controlled low-strength materials containing waste oyster shells. Construction and Building Materials, 46, 128–133. https://doi.org/10.1016/j.conbuildmat.2013.04.020 [CrossRef] [Google Scholar]
  7. Lachemi, M., Hossain, K. M. A., Shehata, M., & Thaha, W. (2008). Controlled low strength materials incorporating cement kiln dust from various sources. Cement and Concrete Composites, 30(5), 381–392. https://doi.org/10.1016/j.cemconcomp.2007.12.002 [CrossRef] [Google Scholar]
  8. Ling, T. C., Kaliyavaradhan, S. K., & Poon, C. S. (2018). Global perspective on application of controlled low-strength material (CLSM) for trench backfilling - An overview. In Construction and Building Materials (Vol. 158, pp. 535–548). Elsevier Ltd. https://doi.org/10.1016/j.conbuildmat.2017.10.050 [CrossRef] [Google Scholar]
  9. of Indian Standards, B. (n.d.). IS 2720-16 (1987): Methods of test for soils, Part 16: Laboratory determination of CBR. [Google Scholar]
  10. Pierce, C. E., & Blackwell, M.C. (n.d.). Potential of scrap tire rubber as lightweight aggregate in flowable fill. www.elsevier.com/locate/wasman [Google Scholar]
  11. Raghavendra, T., Asce, A. M., Udayashankar, B. C., Lokeshwari, M., Vikas, M., Asce, S. M., & Reddy, N.A. (n.d.). Effect of Water Content on Relative Flow Area and Hence Predicted Flow Values of Controlled Low Strength Materials. [Google Scholar]
  12. Raghavendra, T., Sunil, M., & Udayashankar, B.C. (2016). Controlled low-strength materials using bagasse ash and fly ash. ACI Materials Journal, 113(4), 447–457. https://doi.org/10.14359/51688987 [CrossRef] [Google Scholar]
  13. Raghavendra, T., & Udayashankar, B.C. (2014). Flow and Strength Characteristics of CLSM Using Ground Granulated Blast Furnace Slag. Journal of Materials in Civil Engineering, 26(9). https://doi.org/10.1061/(asce)mt.1943-5533.0000927 [CrossRef] [Google Scholar]
  14. Raghavendra, T., & Udayashankar, B.C. (2015). Engineering properties of controlled low strength materials using flyash and waste gypsum wall boards. Construction and Building Materials, 101, 548–557. https://doi.org/10.1016/j.conbuildmat.2015.10.070 [CrossRef] [Google Scholar]
  15. Solanki, P., Bierma, T., & Jin, G. (2020). Properties offlowable fill produced by substituting fly ash with recycled glass powder. Construction and Building Materials, 265. https://doi.org/10.1016/j.conbuildmat.2020.120330 [Google Scholar]
  16. Standard Test Method for CBR (California Bearing Ratio) of Laboratory-Compacted Soils 1. (n.d.). www.astm.org, [Google Scholar]
  17. Standard Test Method for Flow Consistency of Controlled Low Strength Material (CLSM) 1. (n.d.). www.astm.org [Google Scholar]
  18. Standard test method for preparation and testing of controlled low strength material (CLSM) testcylinders. (1995). 04. [Google Scholar]
  19. Taha, R. A., Alnuaimi, A. S., Al-Jabri, K. S., & Al-Harthy, A.S. (2007). Evaluation of controlled low strength materials containing industrial by-products. Building and Environment, 42(9), 3366–3372. https://doi.org/10.1016/j.buildenv.2006.07.028 [CrossRef] [Google Scholar]
  20. Türkel, S. (2007). Strength properties of fly ash based controlled low strength materials. Journal of Hazardous Materials, 147(3), 1015–1019. https://doi.org/10.1016/jjhazmat.2007.01.132 [CrossRef] [PubMed] [Google Scholar]
  21. Yan, D. Y. S., Tang, I. Y., & Lo, I.M.C. (2014). Development of controlled low- strength material derived from beneficial reuse of bottom ash and sediment for green construction. Construction and Building Materials, 64, 201–207. https://doi.org/10.1016/j.conbuildmat.2014.04.087 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.