Open Access
Issue |
E3S Web Conf.
Volume 457, 2023
International Scientific and Practical Symposium “The Future of the Construction Industry: Challenges and Development Prospects” (FCI-2023)
|
|
---|---|---|
Article Number | 02013 | |
Number of page(s) | 14 | |
Section | Integrated Safety in Construction | |
DOI | https://doi.org/10.1051/e3sconf/202345702013 | |
Published online | 05 December 2023 |
- D. Butler, P.N. Luu, S. Karunaratne. Investigation into sediment deposition in the sewers of the London borough of Lambeth. - First Phase Report, Drainage Research Unit, South Bank Polytechnic, July 1989. [Google Scholar]
- Q. Zhou. A Review of Sustainable Urban Drainage Systems Considering the Climate Change and Urbanization Impacts. Water 2014, 6 DOI: 10.3390/w6040976 [Google Scholar]
- Н. Arisz, B.C. Burrell C. Urban drainage infrastructure planning and design considering climate change. IEEE EIC Clim. Change Conf. 2006. [Google Scholar]
- M. Chen, S. Shen, A. Arulrajah, H. Wu, D.W. Hou, Xu Y.S. (2015) Characteristics of strength development of fiber-reinforced and cement improved soft clay of Shanghai. Geotext Geomembr 2015, 43(6), pp. 515–523. [CrossRef] [Google Scholar]
- Cui Q.L., Shen S.L., Xu Y.S., Yin Z.Y., Horpibulsuk S. Field performance of jacking pipe during jacking in soft deposits. Tunnel Undergr Space Technol 2015, 49, pp. 336–344. DOI: 10.1016/j.tusL2022.104585 [CrossRef] [Google Scholar]
- Quan R.S., Liu M., Lu M., Zhang L.J., Wang J.J., Xu S.Y. Waterlogging risk assessment based on land use/cover change: a case study in Pudong New Area, Shanghai. Environ Earth Sci 2010, 61, pp. 1113–1121. DOI: 10.1007/s12665-009-0431-8 [CrossRef] [Google Scholar]
- Ebtehaj, I., Bonakdari, H. and Sharifi, A. Design criteria for sediment transport in sewers based on self-cleansing concept. Journal of Zhejiang University SCIENCE A 2014, Vol. 15, No. 11, pp. 914–924. DOI: 10.1631/jzus.A1300135 [CrossRef] [Google Scholar]
- Ota, J. and Perrusquia, G. Particle velocity and sediment transport at the limit of deposition in sewers. Water Science and Technology 2013, Vol. 67, No. 5, pp. 959–967. DOI: 10.2166/wst.2013.646 [CrossRef] [PubMed] [Google Scholar]
- Almedeij, J. and Almohsen, N., Remarks on camp’s criterion for self-cleansing storm sewers. Journal of irrigation and drainage engineering 2009, Vol. 136, No. 2, pp. 145–148. DOI: 10.1061/(ASCE)IR.1943-4774.0000129 [Google Scholar]
- Ota, J.J. and Nalluri, C. Urban storm sewer design: Approach in consideration of sediments. Journal of Hydraulic Engineering 2003, Vol. 129, No. 4, pp. 291–297. DOI: 10.1061/(ASCE)0733-9429(2003)129:4(291) [CrossRef] [Google Scholar]
- Song, Y. Ho, Yun, R., Lee, E.H., Lee, J. Ho. Predicting Sedimentation in Urban Sewer Conduits. Water 2018, 10, pp. 462–478. DOI: 10.3390/w10040462 [CrossRef] [Google Scholar]
- Rinas M.; Fricke, A.; Tränckner J.; Frischmuth K.; Koegst T. Sediment Transport in Pressure Pipes, Part II: 1D Numeric Simulation. Water 2020, 12, 282. DOI: 10.3390/w12010282 [CrossRef] [Google Scholar]
- Azimi, H., Shabanlou, S. and Salimi, M.S., Free surface and velocity field in a circular channel along the side weir in supercritical flow conditions. Flow Measurement and Instrumentation 2014, Vol. 38, pp. 108–115. DOI: 10.1016/j.flowmeasinst.2014.05.013 [CrossRef] [Google Scholar]
- Azimi, H., Hadad, H., Shokati, Z. and Salimi, M.S., Discharge and flow field of the circular channel along the side weir. Canadian Journal of Civil Engineering 2015, pp. 15–20. [Google Scholar]
- Volgina L., Sergeev S. Assessment of Weight of Sediment Formation Deposit in Municipal Collector System (MCS) International Journal for Computational and Structural Engineering. 2023, 19(1), 23–31; DOI: 10.22337/2587-9618-2023-19-1-23-31. [Google Scholar]
- Campisano, A.; Creaco, E.; Modica, C. Numerical modelling of sediment bed aggradation in open rectangular drainage channels. Urban Water J 2013, 10, pp. 365–376. DOI: 10.1080/1573062X.2012.739627 [CrossRef] [Google Scholar]
- Rinas M.; Tränckner J.; Koegst T. Sedimentation of Raw Sewage: Investigation For a Pumping Station in Northern Germany under Energy-Efficient Pump Control. Water 2019, 11, 40 DOI: 10.3390/w11010040 [Google Scholar]
- Batica, J., Goubesville, P. Collaborative Research on Flood Resilience in Urban Areas: the CORFU project. 34-th World Congress of the International Association for Hydro-Environment Research and Engineering: 33rd Hydrology and Water Resources Symposium and 10th Conference on Hydraulics in Water Engineering, 2011, pp. 3914–3920. [Google Scholar]
- Fronczyk, J., Radziemska, M., Dynowski, P., Zbigniew, M., Bazydło. Quality of Water in the Road Drainage Systems in the Warsaw Agglomeration, Poland, Water, 2016, vol. 8, pp. 429–441. DOI: 10.3390/w8100429 [CrossRef] [Google Scholar]
- Göbel, P., Dierks, C., Coldewey, W.G. Storm water runoff concentration matrix for urban areas, Journal of Contaminant Hydrology 2007, vol. 91, pp. 26–42. DOI: 10.1016/jjconhyd.2006.08.008 [CrossRef] [PubMed] [Google Scholar]
- Nabil, T.; El-Sawaf, I.; El-Nahhas, K. Sand-water slurry flow modelling in a horizontal pipeline by computational fluid dynamics technique. Int. Water Technol. J. 2014, 4, pp. 1–17. [Google Scholar]
- CP 32.13330.2012. Kanalizaciya. Naruzhnye seti i sooruzheniya. Aktualizirovannaya redakciya SNiP 2.04.03-85. - Vve-den 01.01.2013. - M.: Gosstandart Rossii: Izd-vo standartov, 2013 [Google Scholar]
- Karta znacheniy intensivnosti dozhdya [Map of rain intensity values]. Available online: http://nav.tn.ru/calculators/maps/sewerage-outdoor-networks-and-facilities/karta-znacheniy-intensivnosti-dozhdya/ (accessed on 12.07.23) [Google Scholar]
- Suetina, T.A. Assessment of the possibility of local object to be flooded in megalopolis as a result of a hydraulic system breakage in the area of a transport tunnel. IOP Conference Series: Materials Science and Engineering 2021. 1, pp. 1159–1171 [Google Scholar]
- Kolesnikov Yu.M., Khramenkov S.V., Volkov V.Z. and Medvedev L.I. Flushing of the Moskva River Channel and its Environmental Impact. Water Resources 2000. Vol. 27. No.4. pp. 449–456. [Google Scholar]
- Volgina L., Medzvelliya M., Chemeris O. Effect of Fine-Dispersed Inclusions on the Critical Velocity Analysis in the Two-phase Flow. Vestnik MGSU 2014, 11, pp. 145–153. DOI: 10.22227/1997-0935.2014.11. [Google Scholar]
- Volgina L., Segreev S. Determination of the Permissible Bottom Non-Eroding Velocity in the Turbulent Flow. Prorodoobustroystvo 2018, 2, pp. 41–45. [Google Scholar]
- Volgina L., Aleshkov M. Kinematic Characteristics of Two-phase Flows. Vestnik MGSU 2019, 12, pp. 1610–1618. DOI: 10.22227/1997-0935.2019.12.1610-1618 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.