Open Access
Issue
E3S Web Conf.
Volume 460, 2023
International Scientific Conference on Biotechnology and Food Technology (BFT-2023)
Article Number 04003
Number of page(s) 9
Section IoT, Big Data and AI in Food Industry
DOI https://doi.org/10.1051/e3sconf/202346004003
Published online 11 December 2023
  1. X. Wei, G. Xu, H. Wang, Y. He, Z. Han, & W. Wang, Sensing users ‘ emotional intelligence in social networks. IEEE Transactions on Computational Social Systems 7 (1), 103–112 (2020) https://doi.org/10.1109/tcss.2019.2944687 [CrossRef] [Google Scholar]
  2. J. Wu, Y. Sha, R. Li, Q. Liang, B. Jiang, J. Tan, & B. Wang, Natural Language Processing and Chinese Computing 477–489, (2018) https://doi.org/10.1007/978-3-319-73618-1_40 [CrossRef] [Google Scholar]
  3. F. Calabrese, L. Ferrari, & V.D. Blondel, ACM Computing Surveys 47 (2), 1–20 (2015) https://doi.org/10.1145/2655691 [CrossRef] [Google Scholar]
  4. A. Souri, S. Hosseinpour, & A.M. Rahmani, Human-centric Computing and Information Sciences 8(1) (2018) https://doi.org/10.1186/s13673-018-0147-4 [Google Scholar]
  5. I. Suleimenov, A. Massalimova, A. Bakirov, & O. Gabrielyan, MATEC Web of Conferences 214, 02002 (2018) https://doi.org/10.1051/matecconf/201821402002 [CrossRef] [EDP Sciences] [Google Scholar]
  6. A.S. Bakirov, Y.S. Vitulyova, A.A. Zotkin, & I.E. Suleimenov, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 46, 83–90 (2021) [CrossRef] [Google Scholar]
  7. M. Van Gerven, & S. Bohte, Frontiers in Computational Neuroscience 11, (2017) https://doi.org/10.3389/fncom.2017.00114 [Google Scholar]
  8. C.C. Aggarwal, Neural Networks and Deep Learning 105–167, (2018) https://doi.org/10.1007/978-3-319-94463-0_3 [CrossRef] [Google Scholar]
  9. I.E. Suleimenov, D.K. Matrassulova, I. Moldakhan, Y.S. Vitulyova, S.B. Kabdushev, & A.S. Bakirov, Bulletin of Electrical Engineering and Informatics 11 (1), 510–520 (2022) [CrossRef] [Google Scholar]
  10. Y.S. Vitulyova, A.S. Bakirov, S.T. Baipakbayeva, & I.E. Suleimenov, IOP Conference Series: Materials Science and Engineering 946, 012004 (2020) https://doi.org/10.1088/1757-899x/946/1/012004 [CrossRef] [Google Scholar]
  11. I. Moscholios, P. Sarigiannidis, & M. Logothetis, Teletraffic loss/Queueing models in LEO mobile satellite systems: A short survey. 2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP). (2020). https://doi.org/10.1109/csndsp49049.2020.9249490 [Google Scholar]
  12. Teletraffic models of random input. Efficient Multirate Teletraffic Loss Models Beyond Erlang 1–1 (2019). https://doi.org/10.1002/9781119426974.part1 [Google Scholar]
  13. I. Suleimenov, & A. Bakirov, MATEC Web of Conferences 214, 02001 (2018) https://doi.org/10.1051/matecconf/201821402001 [CrossRef] [EDP Sciences] [Google Scholar]
  14. A.T. Saidakhmet, Y.S. Vitulyova, A.S. Bakirov, S.B. Kabdushev, S.T. Baipakbayeva, M.V. Kostcova, … & I.E. Sileimenov, Principles and Technical Means of Implementing the Methods of Group Correction of the Psychoemotional State in the Online Format. In International Scientific Conference on Agricultural Machinery Industry “Interagromash”“ (pp. 1126–1136). Cham: Springer International Publishing. (2022) [Google Scholar]
  15. I. Suleimenov, K. Kadyrzhan, S. Kabdushev, A. Bakirov, & E. Kopishev, New Equipment for Aromatherapy and Related Mobile App: A Tool to Support Small Peasant Farms in Kazakhstan in Crisis. In Robotics, Machinery and Engineering Technology for Precision Agriculture: Proceedings of XIV International Scientific Conference “INTERAGROMASH 2021” (pp. 347–355). Singapore: Springer Singapore. (2021) [Google Scholar]
  16. M.N. Kalimoldayev, I.T. Pak, S.T. Baipakbayeva, G.A. Mun, D.B. Shaltykova, & I.E. Suleimenov, News of the National Academy of Sciences of the Republic of the Kazakhstan-Series of geology and technical sciences 6, 47–54 (2018) [Google Scholar]
  17. Z. Yang, J. Guo, K. Cai, J. Tang, J. Li, L. Zhang, & Z. Su, Understanding retweeting behaviors in social networks. Proceedings of the 19th ACM international conference on Information and knowledge management - CIKM ‘10. (2010) https://doi.org/10.1145/1871437.1871691 [Google Scholar]
  18. F. Benevenuto, T. Rodrigues, M. Cha, & V. Almeida, Characterizing user behavior in online social networks. Proceedings of the 9th ACM SIGCOMM conference on Internet measurement conference - IMC ‘09. (2009). https://doi.org/10.1145/1644893.1644900 [Google Scholar]
  19. S. Shultz, & R. Dunbar, The social brain hypothesis: An evolutionary perspective on the neurobiology of social behaviour. I Know What You’re Thinking 12–28, (2012) https://doi.org/10.1093/acproroso/9780199596492.003.0002 [Google Scholar]
  20. B. Gonçalves, N. Perra, & A. Vespignani, PLoS ONE 6(8), e22656 (2011) https://doi.org/10.1371/journal.pone.0022656 [CrossRef] [PubMed] [Google Scholar]
  21. R. Dunbar, Journal of Human Evolution 22 (6), 469–493 (1992) https://doi.org/10.1016/0047-2484(92)90081-j [CrossRef] [Google Scholar]
  22. R. Dunbar, Annals of Human Biology 36 (5), 562–572 (2009) https://doi.org/10.1080/03014460902960289 [CrossRef] [PubMed] [Google Scholar]
  23. Y.S. Vitulyova, A.S. Bakirov, D.B. Shaltykova, & I.E. Suleimenov, IOP Conference Series: Materials Science and Engineering 946 (1), 012001 (2020) [CrossRef] [Google Scholar]
  24. I. E. Suleimenov, A.S. Bakirov, & D.K. Matrassulova, Journal of Theoretical and Applied Information Technology 99 (11), 2537–2553 (2021) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.