Open Access
E3S Web Conf.
Volume 460, 2023
International Scientific Conference on Biotechnology and Food Technology (BFT-2023)
Article Number 04004
Number of page(s) 9
Section IoT, Big Data and AI in Food Industry
Published online 11 December 2023
  1. J.I. Zhuravlev, Pattern Recognition and Image Analysis 8 (1), 59–100 (1998) [Google Scholar]
  2. W. Homenda, W. Pedrycz, Pattern Recognition: A Quality of Data Perspective. (New York: Wiley, 2018) [CrossRef] [Google Scholar]
  3. M. Beyere, M. Richter, M. Nagel, Pattern Recognition: Introduction, Features, Classifiers and Principles. (Boston: De Gruyter Oldenbourg, 2018) [Google Scholar]
  4. Yu.I. Zhuravlev, Selected Scientic Works. (Moscow, Magister, 1998) [Google Scholar]
  5. M. Kamilov, S. Fazilov, G. Mirzaeva, D. Gulyamova, N. Mirzaev, Journal of Physics: Conference Series 1441 (1), 012142 (2020) [CrossRef] [Google Scholar]
  6. G.J. McLachlan, Discriminant Analysis and Statistical Pattern Recognition. (New York, John Wiley, 2004) [Google Scholar]
  7. Y.I. Zhuravlev, A.E. Dyusembaev, Reports on Mathematics 100 (2), 411–415 (2019) [Google Scholar]
  8. Tou J. and Gonzalez R. Pattern recognition principles. (Moscow, Mir, 1978) [Google Scholar]
  9. Y. Li, B. Liu, Y. Yu, H. Li, J. Sun and J. Cui, 3E-LDA: Three Enhancements to Linear Discriminant Analysis. ACM Transactions on Knowledge Discovery from Data. (New York: ACM, 2021) Article No.: 57. Pp 1–20. [Google Scholar]
  10. C. Li, Y. Shao, W. Yin and M. Liu, Robust and Sparse Linear Discriminant Analysis via an Alternating Direction Method of Multipliers. IEEE Transactions on Neural Networks and Learning Systems. - New York: IEEE 31(3) 915–926 (2020) [CrossRef] [PubMed] [Google Scholar]
  11. R. Duda, P. Hart, D. Stork, Pattern Classification. (New York: John Wiley, 2001) [Google Scholar]
  12. A.R. Webb, K.D. Copsey, Statistical Pattern Recognition. (New York: Wiley, 2011) [Google Scholar]
  13. A.K. Jain, R.P.W. Duin and J. Mao, Statistical pattern recognition: a review. IEEE Transactions on Pattern Analysis and Machine Intelligence 22 (1), 4–37 (2000) [CrossRef] [Google Scholar]
  14. A.B. Merkov, Pattern recognition: An introduction to statistical learning methods. (M., URSS, 2019) [Google Scholar]
  15. M. A. Ayzerman, E. M. Braverman and L. I. Rozonoer, Method of potential functions in the theory of machine learning. (Moscow, Nauka, 1970) [Google Scholar]
  16. V.I. Dubrovin, N.Kh. Koretsky, S.A. Subbotin, Zaporozhye 1, 12–19 (2002) [Google Scholar]
  17. P. Oliveri, NIR news: SAGE Journals 28 (4), 14–15 (2017) [CrossRef] [Google Scholar]
  18. Y. Pavlov, Potential Function Method and Stochastic Approximation, Preferences and Value Evaluation. Date of Publication: February 2019. URL: DOI: 10.13140/RG.2.2.21234.76489. [Google Scholar]
  19. P. Sulewski, Potential Function Method Approach to Pattern Recognition Applications. Environment. Technology. Resources. Proceedings of the 11th International Scientific and Practical Conference (10-11 November, 2017, Rezekne Academy of Technologies, Rezekne, Latvia). Rezekne: RTA, II, 30-35 (2017) [Google Scholar]
  20. P. Sulewski, Recognizing distributions using method of potential functions. Communications in Statistics - Simulation and Computation. Date of Publication: April 2021. URL: DOI: 10.1080/03610918.2021.1908561 [Google Scholar]
  21. V.B. Kudryavtsev, A.E. Andreev, E.E. Gasanov, Test recognition theory. (M., Fizmatlit, 2007) [Google Scholar]
  22. G.S. Lbov, N.G. Startseva, Logical decision functions and issues of statistical stability of solutions. (Novosibirsk: Publishing House IM SB RAS, 1999) [Google Scholar]
  23. E.V. Dyukova, G.O. Maslyakov, P.A. Prokofiev, Journal of Computational Mathematics and Mathematical Physics. Moscow 59 (9), 1605–1616 (2019) [Google Scholar]
  24. E.V. Djukova, G.O. Masliakov, P.A. Prokofyev, Springer 1093, (2019) [Google Scholar]
  25. I. Povkhan, Zaporizhzhzia, 2, 95–105 (2020) [Google Scholar]
  26. I. Povkhan, Lublin 10 (2), 12–15 (2020) [Google Scholar]
  27. O.A. Ignat’ev, Computational Mathematics and Mathematical Physics 55 (12), 2094–2099 (2015). [CrossRef] [Google Scholar]
  28. A.K. Nishanov, G.P. Djurayev, M.A. Khasanova, COMPUSOFT: an International Journal of Advanced Computer Technology 8 (6), 3158–3165 (2019) [Google Scholar]
  29. Yu.I. Zhuravlev, V.V. Ryazanov, O.V. Senko, Recognition. Mathematical methods. Software system. Practical applications. (M., Fazis, 2006) [Google Scholar]
  30. M. Kamilov, Sh. Fazilov, N. Mirzaev, S. Radjabov, Algorithm of calculation of estimates in condition of features ‘ correlations, Problems of Cybernetics and Informatics (PCI’2010): Proceedings of the Third International Conference, September 6-8, Baku, pp. 278–281 (2010) [Google Scholar]
  31. M.M. Kamilov et al., Models of recognition algorithms based on the assessment of the interconnectedness of features. (Tashkent: Fan va tekhnologiya, 2020) [Google Scholar]
  32. Lantz Brett, Machine Learning with R: Expert techniques for predictive modeling. (Packt Publishing Ltd., 2019) [Google Scholar]
  33. S.K. Fazilov, N.M. Mirzaev, G.R. Mirzaeva, S.E. Tashmetov, Communications in Computer and Information Science 1035, 474–483 (2019) [CrossRef] [Google Scholar]
  34. Sh.Kh. Fazilov, N.M. Mirzaev, G.R. Mirzaeva, Procedia Computer Science. Amsterdam 150, 671–678 (2019) [Google Scholar]
  35. O.N. Mirzaev, S.S. Radjabov, G.R. Mirzaeva, K.T. Usmanov, N.M. Mirzaev, Communications in Computer and Information Science (CCIS). Springer 1526, 186–196 (2022) [CrossRef] [Google Scholar]
  36. Sh.Kh. Fazilov, N.M. Mirzaev, S.S. Radjabov, O.N. Mirzaev, Determining of Parameters in the Construction of Recognition Operators in Conditions of Features Correlations, Proceedings of the School-Seminar on Optimization Problems and their Applications (OPTA-SCL 2018) Omsk, Russia, July 8-14, 2018. Edited by: Sergey Belim, Alexander Kononov, Yulia Kovalenko. Published on CEUR-WS: 18-May- 2018. URL: [Google Scholar]
  37. Sh.Kh. Fazilov, N.M. Mirzaev, S.S. Radjabov, G.R. Mirzaeva, Journal of Physics: Conference Series. London 1260, 1–8 (2019) [Google Scholar]
  38. U.M. Braga-Neto, E.R. Dougherty, Error Estimation for Pattern Recognition. (New York, Springer, 2016) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.