Open Access
Issue
E3S Web Conf.
Volume 461, 2023
Rudenko International Conference “Methodological Problems in Reliability Study of Large Energy Systems“ (RSES 2023)
Article Number 01069
Number of page(s) 8
DOI https://doi.org/10.1051/e3sconf/202346101069
Published online 12 December 2023
  1. Besekersky, V.A., Popov, E.P. (2003). Theory of automatic control systems (S-Pb: Publishing house “Profession”, Ed. 4th) p752. [Google Scholar]
  2. Bobtsov, A.A., Miroshnik, I.V. (2001). Linear automatic control systems (S-Pb: SPbSU ITMO) p245. [Google Scholar]
  3. Egupov N.D., Pupkov, K.A. (2004). Methods of the classical and modern theory of automatic control. Textbook in 5 vol., Publishing House of Bauman Moscow State Technical University. [Google Scholar]
  4. Tsykunov, A.M. (2009). Adaptive and robust control of dynamic objects by output. Fizmatlit, p268. [Google Scholar]
  5. Dorf, R. Modern control systems / R. Dorf, R. Bishop., translated from English by B.I. Kopylova, Laboratory of Basic Knowledge, 2002. pp. 831–832. [Google Scholar]
  6. Yusupbekov, N.R., Igamberdiev, H.Z., Sevinov, J.U. (2020). Journal of Advanced Research in Dynamical and Control Systems, Volume 12, Issue 6s, Pp: 77-88. DOI:10.5373/JARDCS/V12SP6/SP20201009. [Google Scholar]
  7. Abdurakhmanova Y.M., Sevinov J.U. (2021). Algorithms to Synthesis for Adaptive Sub-Optimal Control of Dynamic Objects Based on Regular Methods. International Conference on Information Science and Communications Technologies (ICISCT). Pp. 1-3, DOI: 10.1109/ICISCT52966.2021.9670234. [Google Scholar]
  8. Igamberdiev, H.Z., Boeva, O.H., Sevinov, J.U. (2020). Sustainable algorithms for selecting feedback in dynamic object management systems. Journal of Advanced Research in Dynamical and Control Systems. 12(7 Special Issue). -pp. 2162–2166. [CrossRef] [Google Scholar]
  9. Derevitsky D.P., Fradkov A.A. (1981). Applied theory of discrete adaptive control systems (Moscow: Nauka). p216. [Google Scholar]
  10. Tikhonov A.N., Arsenin V.Ya. (1986). Methods of solving ill–posed problems (Moscow: Nauka). p288. [Google Scholar]
  11. Morozov V.A. (1987). Regular methods for solving incorrectly set tasks (Moscow: Nauka). [Google Scholar]
  12. Kuzovkov N.T. (1976). Model control and monitoring devices (Moscow: Mechanical Engineering). [Google Scholar]
  13. Grigoriev V.V., Zhuravleva N.V., Lukyanova G.V. and Sergeev K.A. (2007). Synthesis of automatic control systems by the modal control method (S-Pb: St. Petersburg State University ITMO). p 108. [Google Scholar]
  14. Sevinov J.U., Boeva O.H. (2022). Synthesis Algorithms for Adaptive-Modal Control Systems for Technological Objects With Delays. AIP Conference Proceedings 2647, 030007. https://doi.org/10.1063/5.0104891. [CrossRef] [Google Scholar]
  15. Yusupbekov, N., Igamberdiev, H., Mamirov, U. (2022). Algorithms for Robust Stabilization of a Linear Uncertain Dynamic Object Based on an Iterative Algorithm. Lecture Notes in Netstatement and Systems, 307, 225-232. DOI: 10.1007/978-3-030-85626-7_28. [CrossRef] [Google Scholar]
  16. Gaiduk A.R. (1987). On the limitations caused by a given part of the system and the control device (Moscow: Izv. vuzov. Instrumentation, №5). Pp. 11-16. [Google Scholar]
  17. Sevinov J.U., Boeva O.H. (2021). Algorithms for Determining the Placement of Poles in Multivariate Systems With Proportional-Differential Output Feedback, International Journal of Advanced Research in Science, Engineering and Technology, Vol. 8, Issue 3, pp. 16896-16902. [Google Scholar]
  18. Miroshnik I.V. (2005). Theory of automatic control. Linear systems (S-Pb: Peter) p336. [Google Scholar]
  19. Gantmacher F.R. (1988). Matrix theory (Moscow: 4th ed. Nauka. Fiz. mat. lit.) 2. p552. [Google Scholar]
  20. Paraev Yu.I., Perepelkin E.A. (2000). Linear matrix equations in the problems of analysis and synthesis of multiconnected dynamical systems (Barnaul: Publishing house of AltSTU) p117. [Google Scholar]
  21. Zhdanov A.I. (2006). Introduction to methods of solving ill–posed problems (Ed. Samara State Aerospace University) p87. [Google Scholar]
  22. Fomin V.N., Fradkov A.L., Yakubovich V.A. (1981). Adaptive control of dynamic objects (M.: Nauka) p448. [Google Scholar]
  23. Tyutikov V.V., Tararykin S.V. (2006). Robust modal control of technological objects (State Educational Institution “Ivanovo State Power Engineering University named after V.I. Lenin". Ivanovo) p256. [Google Scholar]
  24. Zubov N.E., Mikrin E.A. and Ryabchenko V. N. (2016). Matrix methods in the theory and practice of automatic control systems of aircraft (Moscow: Publishing House of Bauman Moscow State Technical University) p666. [Google Scholar]
  25. Yusupbekov, N.R., Igamberdiev, H.Z., Mamirov, U.F. (2021). Stable algorithms for adaptive control and adaptation of uncertain dynamic objects based on reference models. CEUR Workshop Proceedings, 2965, Pp: 296-302. [Google Scholar]
  26. Sevinov J.U., Mallaev A.R. and Xusanov S.N. (2021). Advances in Intelligent Systems and Computing, 1323. Springer, Cham. https://doi.org/10.1007/978-3-030-68004-69. [Google Scholar]
  27. Аlisher Mallayev, Jasur Sevinov, Suban Xusanov, Okhunjon Boborayimov (2022). Algorithms for the synthesis of gradient controllers in a nonlinear control system. AIP Conference Proceedingsthis link is disabled (CAMSTech-II), 2467, 030003. https://doi.org/10.1063/5.0093749. [Google Scholar]
  28. Kudryashov V.S. (2006). Calculation of a digital system for multi-connected control of the ammonia synthesis process. Materials of the 3rd scientific and technical. conf. “Mechatronics, automation, control”. – St. Petersburg. Pp: 325-328. [Google Scholar]
  29. Sokolov R.S. (2003). Chemical Technology (M.: Humanit. ed. center VLADOS) p368. [Google Scholar]
  30. Ivanov M.E., Olevsky V.M., Polyakov N.N. (1990). Production of ammonia capacity (M.: Chemistry) p288. [Google Scholar]
  31. Faddeev M.A. (2008). Elementary processing of the results of the experiment (S-Pb: Lan) p128. [Google Scholar]
  32. Alifanov O.M., Artyukhin E.A., Rumyantsev S.V. (1988). Experimental methods for solving ill-posed problems (M.: Nauka) p288. [Google Scholar]
  33. Boeva O.H. (2021). Software for determining the parameters of the multi-channel modal adjuster of the stabilization system of column operation modes in ammonia synthesis. Certificate of official registration of the program created for computer program. DGU 12506, 27.09.2021. [Google Scholar]
  34. Sevinov J.U., Boeva O.H. (2021). Software for solving problems of modal control using the optimal algorithm of the digital state controller. Certificate of official registration of the computer program, DGU 11396 dated April 22, 2021. [Google Scholar]
  35. Yusupbekov, A.N., Sevinov, J.U., Mamirov, U.F., Botirov, T.V. (2021). Synthesis Algorithms for Neural Network Regulator of Dynamic System Control. Advances in Intelligent Systems and Computing, 1306, pp. 723–730. DOI: 10.1007/978-3-030-64058-3_90. [CrossRef] [Google Scholar]
  36. Igamberdiyev H.Z., Zaripov O.O., Yusupbekov A.N. (2014). Steady Estimation Algorithms of the Dynamic Systems Condition on the Basis of Concepts of the Adaptive Filtration and Control, ICTACT Journal on Soft Computing, Vol. 4, Issue 4, pp. 796-803. DOI 10.21917/ijsc.2014.0114. [CrossRef] [Google Scholar]
  37. Misrikhanov M.S. (2007). Invariant control of multidimensional systems. An algebraic approach (Moscow: Nauka) p398. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.