Open Access
Issue
E3S Web of Conf.
Volume 462, 2023
International Scientific Conference “Fundamental and Applied Scientific Research in the Development of Agriculture in the Far East” (AFE-2023)
Article Number 02039
Number of page(s) 7
Section Advances in Crop and Plant Cultivation
DOI https://doi.org/10.1051/e3sconf/202346202039
Published online 12 December 2023
  1. E. Bousquet, A. Mialon, N. Rodriguez-Fernandez, S. Mermoz, Y. Kerr, Monitoring post-fire recovery of various vegetation biomes using multi-wavelength satellite remote sensing, Biogeosciences, 19, 3317–3336 (2022) https://doi.org/10.5194/bg-19- 3317-2022 [CrossRef] [Google Scholar]
  2. N. H. F. French, E. S. Kasischke, R. J. Hall, K. A. Murphy, D. L. Verbyla, E. E. Hoy, J. L. Allen, Using Landsat data to assess fire and burn severity in the North American boreal forest region: an overview and summary of results, International Journal of Wildland Fire, 17(4), 443-462 (2008) doi: 10.1071/WF08007 [CrossRef] [Google Scholar]
  3. A. Karpachevskiy, S. Lednev, I. Semenkov, A. Sharapova, S. Nagiyev, T. Koroleva, Delineation of burned arid landscapes using Landsat 8 OLI data: a case study of Karaganda region in Kazakhstan, Arid Land Research and Management, 35(3), 292-310 (2021) doi: 10.1080/15324982.2021.1887398 [CrossRef] [Google Scholar]
  4. L.G. Khanina, V.E. Smirnov, M.S. Romanov, et al., Effect of spring grass fires on vegetation patterns and soil quality in abandoned agricultural lands at local and landscape scales in Central European Russia. Ecol Process, 7, 38 (2018) doi.org/10.1186/s13717-018-0150-8 [CrossRef] [Google Scholar]
  5. S.A. Khvostikov, S.A. Bartalev, E.A. Loupian, Stochastic wildfire model based on Monte-Carlo method and remote sensing data integration, Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa, 13(5), 145-156 (2016) doi: 10.21046/2070-7401-2016-13-5-145-156 [CrossRef] [Google Scholar]
  6. A.d.P. Pacheco, J.A.d.S. Junior, A.M. Ruiz-Armenteros, R.F.F. Henriques, Assessment of k-Nearest Neighbor and Random Forest Classifiers for Mapping Forest Fire Areas in Central Portugal Using Landsat-8, Sentinel-2, and Terra Imagery. Remote Sens., 13, 1345 (2021) http://doi.org/10.3390/rs13071345 [CrossRef] [Google Scholar]
  7. S.S. Shinkarenko, A.N. Berdengalieva, V.V. Doroshenko, et al., An Analysis of the Dynamics of Areas Affected by Steppe Fires in Western Kazakhstan on the Basis of Earth Remote Sensing Data. Arid Ecosyst, 13, 29–38 (2023) https://doi.org/10.1134/S2079096123010122 [CrossRef] [Google Scholar]
  8. C.E. Soulard, C.M. Albano, M.L. Villarreal, J.J. Walker, Continuous 1985–2012 Landsat Monitoring to Assess Fire Effects on Meadows in Yosemite National Park, California. Remote Sens., 8, 371 (2016) https://doi.org/10.3390/rs8050371 [CrossRef] [Google Scholar]
  9. A. Sulova, J. Jokar Arsanjani, Exploratory Analysis of Driving Force of Wildfires in Australia: An Application of Machine Learning within Google Earth Engine. Remote Sens., 13, 10 (2021) https://doi.org/10.3390/rs13010010 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.