Open Access
Issue |
E3S Web Conf.
Volume 472, 2024
International Conference on Renewable Energy, Green Computing and Sustainable Development (ICREGCSD 2023)
|
|
---|---|---|
Article Number | 02010 | |
Number of page(s) | 12 | |
Section | Green Computing | |
DOI | https://doi.org/10.1051/e3sconf/202447202010 | |
Published online | 05 January 2024 |
- Rathish Kumar B.V., Halim A. (2019) A linear fourth-order pde-based gray-scale image inpainting model. Comput Appl Math 38(6): 1–21 [CrossRef] [Google Scholar]
- Yang X., Guo B. (2017) Fractional-order tensor regularization for image inpainting. IET Image Process 11(9): 734–745 [CrossRef] [Google Scholar]
- Theljani A., Belhachmi Z., Kallel M., Moakher M. (2017) A multiscale fourth-order model for the image inpainting and low-dimensional sets recovery. Math Meth Appl Sci 40(10): 3637–3650. [CrossRef] [Google Scholar]
- Mousavi P., Tavakoli A. (2019) A new algorithm for image inpainting in fourier transform domain. Comput Appl Math 38(1): 22–30. [CrossRef] [Google Scholar]
- Liu H., Bi X., Lu G., Wang W. (2019) Screen window propagating for image inpainting. IEEE Access 6: 61761–61772. [Google Scholar]
- Isogawa M., Mikami D., Iwai D., Kimata H., Sato K. (2018) Mask optimization for image inpainting. IEEE Access 6: 69728–69741. [CrossRef] [Google Scholar]
- Liu Y., Wang F., Xi X., Liu Z. (2014) Improved algorithm for image inpainting based on texture synthesis. J Chinese Comput Syst 35(12): 2754–2758. [Google Scholar]
- Zhang S., Wang K., Zhu X. (2014) Improved criminisi algorithm constrained by local feature. Comput Eng Appl 50(8): 127–130. [Google Scholar]
- Nan A., Xi X. (2014) An improved criminisi algorithm based on a new priority function and updating confidence. In: International conference on biomedical engineering and informatics, pp 885–889. [Google Scholar]
- Yao F., Damaged region filling by improved criminisi image inpainting algorithm for thangka. Clust Comput 22 (6): 13683–13691, 2019. [CrossRef] [Google Scholar]
- Ghorai M., Mandal S., Chanda B. (2018) A group-based image inpainting using patch refinement in mrf framework. IEEE Trans Image Process 27(2): 556–567. [CrossRef] [PubMed] [Google Scholar]
- Zhang N., Ji H., Liu L., Wang G. (2019) Exemplar-based image inpainting using angle- aware patch matching. EURASIP J Image Video Process 70: 1–13. [Google Scholar]
- Janardhana Rao, B., Chakrapani, Y. and Srinivas Kumar, S., 2018. Image inpainting method with improved patch priority and patch selection. IETE Journal of Education, 59(1), pp. 26–34. [CrossRef] [Google Scholar]
- Revathi, K., and B. Janardhana Rao. “Analysis and Implementation of Enhanced Image Inpainting method using adjustable patch sizes.” International Journal 9, no. 3 (2021). [Google Scholar]
- Rao, B. Janardhana, and O. Venkata Krishna. “Evaluation of Image Inpainting Algorithms.” CVR Journal of Science and Technology 7 (2014): 48–52. [CrossRef] [Google Scholar]
- Zhang, L., & Chang, M. (2021). An image inpainting method for object removal based on difference degree constraint. Multimedia Tools and Applications, 80, 4607–4626. [CrossRef] [Google Scholar]
- Janardhana Rao, B., Chakrapani, Y., & Srinivas Kumar, S. (2022). MABC-EPF: Video in-painting technique with enhanced priority function and optimal patch search algorithm. Concurrency and Computation: Practice and Experience, 34(11), e6840. [CrossRef] [Google Scholar]
- B. Janardhana Rao, Y. Chakrapani, S. Srinivas Kumar, An Enhanced Video Inpainting Technique with Grey Wolf Optimization for Object Removal Application, Journal of Mobile Multimedia (2022), Vol. 18, Issue 3, pp. 561–582. [Google Scholar]
- Janardhana Rao, B., Chakrapani, Y., & Srinivas Kumar, S. (2022). Video Inpainting Using Advanced Homography-based Registration Method. Journal of Mathematical Imaging and Vision, 64(9), 1029–1039. [CrossRef] [Google Scholar]
- Janardhana Rao, B., Chakrapani, Y., & Srinivas Kumar, S. (2022). Hybridized cuckoo search with multi-verse optimization-based patch matching and deep learning concept for enhancing video inpainting. The Computer Journal, 65(9), 2315–2338. [CrossRef] [Google Scholar]
- O. Venkata Krishna, C. Venkata Narasimhulu, and K. Satya Prasad. “An Efficient VLSI architecture of 2D FIR filter using enhanced approximate compressor circuits” International Journal of Circuit Theory and Applications, Vol. 49, No. 11, pp. 3653–3668, 2021. [CrossRef] [Google Scholar]
- Rao, B. J., Revathi, K., & Babu, G. H. (2022). Video Inpainting using self-adaptive GMM with Improved Inpainting Technique. CVR Journal of Science and Technology, 22(1), 42–46. [Google Scholar]
- Shaik, A., Devi, B. A., Baskaran, R., Bojjawar, S., Vidyullatha, P., & Balaji, P. (2023). Recurrent neural network with emperor penguin-based Salp swarm (RNN-EPS2) algorithm for emoji based sentiment analysis. Multimedia Tools and Applications, 1–20. [Google Scholar]
- Singh, D., Nagaraju, D., Mohan, B. R., Bojjawar, S., Burada, S., Kumar, S. P., & Sundar, R. (2023). Electronic Health Record Sharing in Cloud Computing with Privacy and Security Preservation Using Blockchain Technology. International Journal of Intelligent Systems and Applications in Engineering, 11(10s), 407–422. [Google Scholar]
- A. Criminisi, P. Pérez, and K. Toyama, “Region filling and object removal by exemplarbased image inpainting,” IEEE Transactions on image processing, 13(9), pp. 1200–1212, 2004. [CrossRef] [PubMed] [Google Scholar]
- Arbelaez P., Maire M., Fowlkes C., Malik J. (2011) Contour eetection and hierarchical image segmentation. IEEE Trans Pattern Anal Mach Intell 33(5): 898–916. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.