Open Access
Issue |
E3S Web Conf.
Volume 476, 2024
The 4th Aceh International Symposium on Civil Engineering (AISCE 2023)
|
|
---|---|---|
Article Number | 01056 | |
Number of page(s) | 12 | |
DOI | https://doi.org/10.1051/e3sconf/202447601056 | |
Published online | 17 January 2024 |
- R. R. E. Vernimmen, A. Hooijer, E. Aldrian, and A. Van Dijk, “Evaluation and bias correction of satellite rainfall data for drought monitoring in Indonesia,” Hydrol. Earth Syst. Sci., vol. 16, no. 1, pp. 133–146, 2012. [CrossRef] [Google Scholar]
- C. D. Evans et al., “Rates and spatial variability of peat subsidence in Acacia plantation and forest landscapes in Sumatra, Indonesia,” Geoderma, vol. 338, pp. 410–421, 2019. [CrossRef] [Google Scholar]
- G. C. Dargie et al., “Age, extent and carbon storage of the central Congo Basin peatland complex,” Nature, vol. 542, no. 7639, pp. 86–90, 2017. [CrossRef] [PubMed] [Google Scholar]
- A. Hooijer et al., “Subsidence and carbon loss in drained tropical peatlands,” Biogeosciences, vol. 9, no. 3, pp. 1053–1071, 2012. [CrossRef] [Google Scholar]
- S. H. Wahyunto Ritung, “Peta luas sebaran lahan gambut dan kandungan karbon di pulau Sumatera/Maps of area of peatland distribution and carbon content in Sumatera,” Wetl. Int. Progr. Wildl. Habitat Canada (WHC)., 2003. [Google Scholar]
- L. B. Triadi, F. F. Adji, and A. Dhiaksa, “DAMPAK DINAMIKA MUKA AIR TANAH PADA LAJU DAN WAKTU SUBSIDEN LAHAN RAWA GAMBUT TROPIKA IMPACT OF WATER DYNAMICS LAND ON RATE AND TIME OF PEAT SWAMP LAND SUBSIDENCE TROPIKA,” J. Tek. Hidraul., vol. 7, no. 2, pp. 163–178, 2016. [Google Scholar]
- J. Miettinen and S. C. Liew, “Degradation and development of peatlands in Peninsular Malaysia and in the islands of Sumatra and Borneo since 1990,” L. Degrad. Dev., vol. 21, no. 3, pp. 285–296, 2010. [CrossRef] [Google Scholar]
- B. Radjagukguk, “No Title,” Perubahan sifat-sifat Fis. dan Kim. tanah gambut akibat Rekl. lahan gambut untuk Pertan., 2000. [Google Scholar]
- J. H. M. Wösten, A. B. Ismail, and A. L. M. Van Wijk, “Peat subsidence and its practical implications: a case study in Malaysia,” Geoderma, vol. 78, No. 1-2, pp. 25–36, 1997. [CrossRef] [Google Scholar]
- H. S. Nieuwenhuis and F. Schokking, “Land subsidence in drained peat areas of the Province of Friesland, The Netherlands,” Q. J. Eng. Geol. Hydrogeol., vol. 30, no. 1, pp. 37–48, 1997. [CrossRef] [Google Scholar]
- C. J. Schothorst, “Subsidence of low moor peat soils in the western Netherlands,” Geoderma, vol. 17, no. 4, pp. 265–291, 1977. [CrossRef] [Google Scholar]
- T. V. Armentano, “Drainage of organic soils as a factor in the world carbon cycle,” Bioscience, vol. 30, no. 12, pp. 825–830, 1980. [CrossRef] [Google Scholar]
- S. J. Deverel and S. Rojstaczer, “Subsidence of agricultural lands in the Sacramento-San Joaquin Delta, California: Role of aqueous and gaseous carbon fluxes,” Water Resour. Res., vol. 32, no. 8, pp. 2359–2367, 1996. [CrossRef] [Google Scholar]
- S. J. Deverel and D. A. Leighton, “Historic, recent, and future subsidence, sacramento-san Joaquin delta, California, USA,” San Fr. Estuary Watershed Sci., vol. 8, No. 2, 2010. [Google Scholar]
- C. J. Schothorst, “Drainage and behaviour of peat soils,” ICW Wageningen, The Netherlands, 1982. [Google Scholar]
- Q. Dawson, C. Kechavarzi, P. B. Leeds-Harrison, and R. G. O. Burton, “Subsidence and degradation of agricultural peatlands in the Fenlands of Norfolk, UK,” Geoderma, vol. 154, No. 3-4, pp. 181–187, 2010. [CrossRef] [Google Scholar]
- J. W. Elder and R. Lal, “Tillage effects on physical properties of agricultural organic soils of north central Ohio,” Soil Tillage Res., vol. 98, no. 2, pp. 208–210, 2008. [CrossRef] [Google Scholar]
- E. A. Davidson and I. A. Janssens, “Temperature sensitivity of soil carbon decomposition and feedbacks to climate change,” Nature, vol. 440, no. 7081, pp. 165–173, 2006. [CrossRef] [PubMed] [Google Scholar]
- T. L. Holzer, Man-induced land subsidence, vol. 6. Geological Society of America, 1984. [Google Scholar]
- J. Leifeld, M. Müller, and J. Fuhrer, “Peatland subsidence and carbon loss from drained temperate fens,” Soil Use Manag., vol. 27, no. 2, pp. 170–176, 2011. [CrossRef] [Google Scholar]
- M. Mc Afee, The rise and fall of Bälinge mossar, no. 147. 1985. [Google Scholar]
- R. Oleszczuk, E. Zając, and J. Urbański, “Verification of empirical equations describing subsidence rate of peatland in Central Poland,” Wetl. Ecol. Manag., vol. 28, no. 3, pp. 495–507, 2020. [CrossRef] [Google Scholar]
- S. Regan, R. Flynn, L. Gill, O. Naughton, and P. Johnston, “Impacts of groundwater drainage on peatland subsidence and its ecological implications on an Atlantic raised bog,” Water Resour. Res., vol. 55, no. 7, pp. 6153–6168, 2019. [CrossRef] [Google Scholar]
- G. Gambolati, M. Putti, P. Teatini, and G. Gasparetto Stori, “Subsidence due to peat oxidation and impact on drainage infrastructures in a farmland catchment south of the Venice Lagoon,” Environ. Geol., vol. 49, no. 6, pp. 814–820, 2006. [CrossRef] [Google Scholar]
- L. A. Schipper and M. McLeod, “Subsidence rates and carbon loss in peat soils following conversion to pasture in the Waikato Region, New Zealand,” Soil Use Manag., vol. 18, no. 2, pp. 91–93, 2002. [CrossRef] [Google Scholar]
- F. Zanello, P. Teatini, M. Putti, and G. Gambolati, “Long term peatland subsidence: Experimental study and modeling scenarios in the Venice coastland,” J. Geophys. Res. Earth Surf., vol. 116, no. F4, 2011. [CrossRef] [Google Scholar]
- G. Gambolati, M. Putti, P. Teatini, and G. G. Stori, “Subsidence due to peat oxidation and its impact on drainage infrastructures in a farmland catchment south of the Venice Lagoon,” Mater. Geoenvironment, vol. 50, pp. 125–128, 2003. [Google Scholar]
- J. Pronger, L. A. Schipper, R. B. Hill, D. I. Campbell, and M. McLeod, “Subsidence rates of drained agricultural peatlands in New Zealand and the relationship with time since drainage,” J. Environ. Qual., vol. 43, no. 4, pp. 1442–1449, 2014. [CrossRef] [Google Scholar]
- B. Radjagukguk, “Perubahan sifat-sifat fisik dan kimia tanah gambut akibat reklamasi lahan gambut untuk pertanian,” J. Ilmu Tanah dan Lingkung., vol. 2, No. 2000, 2000. [Google Scholar]
- I. I. Adkhi, M. Karuniasa, and R. P. Tambunan, “Watershed Flood Vulnerability Assessment Based Land Subsidence Analysed from a Long Time Period of Sentinel-1 Radar Data,” in IOP Conference Series: Earth and Environmental Science, 2021, vol. 940, No. 1, p. 12035. [Google Scholar]
- S. Hanson et al., “A global ranking of port cities with high exposure to climate extremes,” Clim. Change, vol. 104, no. 1, pp. 89–111, 2011. [CrossRef] [Google Scholar]
- USAID, No TitleUNDERSTANDING THE DRIVERS OF DEFORESTATION AND THE POLICIES INCENTIVIZING FOREST CONVERSION IN FOREST AND PEATLAND IN THE LEUSER LANDSCAPE. 2019. [Google Scholar]
- A. Aswandi, R. Sadono, H. Supriyo, and H. Hartono, “Kehilangan Karbon Akibat Drainase Dan Degradasi Lahan Gambut Tropika Di Trumon Dan Singkil Aceh (Carbon Loss From Drainaged and Degradation of Tropical Peatland in Trumon and Singkil, Aceh),” J. Mns. dan Lingkung., vol. 23, no. 3, pp. 334–341, 2016. [Google Scholar]
- P. K. A. Selatan, KAJIAN LINGKUNGAN HIDUP STRATEGIS RANPERDA RENCANA TATA RUANG WILAYAH KABUPATEN ACEH SELATAN TAHUN 2014-2O34. [Google Scholar]
- Thetapaktuanpost, “Banjir Masih Rendam 3 Desa di Kabupaten Aceh Selatan,” 2021. [Google Scholar]
- Thetapaktuanpost, “Pejabat Bersama Dewan Aceh Selatan Arungi Sungai Gelombang, Cek Penyebab Sering Banjir Trumon Raya,” 2021. [Google Scholar]
- Thetapaktuanpost, “Pintu Air Dibuka Lagi Penyebab Kembali Terjadi Banjir Kiriman di Trumon Timur,” 2022. [Google Scholar]
- E. Carminati and G. Martinelli, “Subsidence rates in the Po Plain, northern Italy: the relative impact of natural and anthropogenic causation,” Eng. Geol., vol. 66, No. 3-4, pp. 241–255, 2002. [CrossRef] [Google Scholar]
- Mentri Pekerjaan Umum, Pola PENGELOLAAN SUMBER DAYA AIRWILAYAH SUNGAI Baru-Kluet. 2014. [Google Scholar]
- Menteri Pekerjaan Umum, Pengelolaan Sumber Daya Air Wilayah Sungai Alas- Singkil. 2014. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.