Open Access
Issue |
E3S Web Conf.
Volume 574, 2024
1st International Scientific Conference “Green Taxonomy for Sustainable Development: From Green Technologies to Green Economy” (CONGREENTAX-2024)
|
|
---|---|---|
Article Number | 03007 | |
Number of page(s) | 14 | |
Section | Environmental, Social, and Governance (ESG) | |
DOI | https://doi.org/10.1051/e3sconf/202457403007 | |
Published online | 02 October 2024 |
- M.E.J. Newman, M. Girvan, Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004) [CrossRef] [PubMed] [Google Scholar]
- S. Fortunato, Community detection in graphs. Phys. Rep. 486 (2010) 75-174 [CrossRef] [Google Scholar]
- K. Nowicki, T.A.B. Snijders, Estimation and prediction for stochastic blockstructures. J. Am. Stat. Assoc. 96 (2001) 1077-1087 [CrossRef] [Google Scholar]
- T.P. Peixoto, Efficient Monte Carlo and greedy heuristic for the inference of stochastic block models. Phys. Rev. E 89, 012804 (2014) [CrossRef] [PubMed] [Google Scholar]
- J. Yang, J. Leskovec, Community-affiliation graph model for overlapping network community detection. Proc. of the 2012 IEEE 12th Int. Conf. on Data Mining (2012) 1170-1175 [Google Scholar]
- B. Karrer, M.E.J. Newman, Stochastic blockmodels and community structure in networks. Phys. Rev. E 83, 016107 (2011) [CrossRef] [PubMed] [Google Scholar]
- L. Peel, D.B. Larremore, A. Clauset, The ground truth about metadata and community detection in networks. Sci. Adv. 3, e1602548 (2017) [CrossRef] [Google Scholar]
- A. Lancichinetti, S. Fortunato, Community detection algorithms: A comparative analysis. Phys. Rev. E 80, 056117 (2009) [CrossRef] [PubMed] [Google Scholar]
- M.E.J. Newman, Equivalence between modularity optimization and maximum likelihood methods for community detection. Phys. Rev. E 94, 052315 (2016) [CrossRef] [PubMed] [Google Scholar]
- A. Abdushukurov, D. Zakhidov, Social networks: Effective methods of dividing into two and three groups. AIP Conference Proceedings 3147 (2024) [Google Scholar]
- A. Clauset, M.E.J. Newman, C. Moore, Finding community structure in very large networks. Phys. Rev. E 70, 066111 (2004) [CrossRef] [PubMed] [Google Scholar]
- A. Lancichinetti, S. Fortunato, F. Radicchi, Benchmark graphs for testing community detection algorithms. Phys. Rev. E 78(4), 046110 (2008) [CrossRef] [PubMed] [Google Scholar]
- V.D. Blondel, J.L. Guillaume, R. Lambiotte, E. Lefebvre, Fast unfolding of communities in large networks. J. Stat. Mech.: Theory Exp. 2008, P10008 (2008) [CrossRef] [Google Scholar]
- M. Rosvall, C.T. Bergstrom, Maps of random walks on complex networks reveal community structure. Proceedings of the National Academy of Sciences 105 (2008) 1118-1123 [CrossRef] [PubMed] [Google Scholar]
- M. Menner, M. N. Zeilinger,, Maximum likelihood methods for inverse learning of optimal controllers. IFAC-PapersOnLine 53 (2020) 5266-5272 [CrossRef] [Google Scholar]
- G. Palla, I. Derényi, I. Farkas, T. Vicsek, Uncovering the overlapping community structure of complex networks in nature and society. Nature 435 (2005) 814-818 [CrossRef] [PubMed] [Google Scholar]
- J. Li, Analysis of snow load probabilistic models and calculation of reference snow pressure using maximum likelihood method for multiple cities in Liaoning Province, China. Structures 57, 105257 (2023) [CrossRef] [Google Scholar]
- T. Zhang, Probabilistic model of the pre-corrosion fatigue life of epoxy-coated aluminum alloys based on the single point-group model of the maximum likelihood method. Int. J. Fatigue 171, 107580 (2023) [CrossRef] [Google Scholar]
- M.S. Chowdhury, Comparison of accuracy and reliability of random forest, support vector machine, artificial neural network and maximum likelihood method in land use/cover classification of urban setting. Environmental Challenges 14, 100800 (2024) [CrossRef] [Google Scholar]
- M. Li, X. Liu, Maximum likelihood least squares based iterative estimation for a class of bilinear systems using the data filtering technique. International Journal of Control, Automation and Systems 18 (2020) 1581-1592 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.