Open Access
Issue |
E3S Web Conf.
Volume 576, 2024
The 13th Engineering International Conference “Sustainable Development Through Green Engineering and Technology” (EIC 2024)
|
|
---|---|---|
Article Number | 04003 | |
Number of page(s) | 17 | |
Section | Renewable and Sustainable Energy | |
DOI | https://doi.org/10.1051/e3sconf/202457604003 | |
Published online | 03 October 2024 |
- H. Priadi, S. Awad, A. Villot, Y. Andres, W. W. Purwanto, Techno-enviro-economic analysis of second-generation bioethanol at plant-scale by different pre-treatments of biomass from palm oil waste. Energy Convers. Manag. X. 21, 100522 (2024). https://doi.org/10.1016/j.ecmx.2023.100522 [Google Scholar]
- R. Hermawan, A. Suryosatyo, Y. Tangke, Effect of syngas recirculation in the pyrolysis zone on the rice husk gasification process using the downdraft reactor. Case Stud. Therm. Eng. 56, 104182 (2024). https://doi.org/10.1016/j.csite.2024.104182 [CrossRef] [Google Scholar]
- K. Mishra, S. Singh Siwal, A. Kumar Saini, V. K. Thakur, Recent update on gasification and pyrolysis processes of lignocellulosic and algal biomass for hydrogen production. Fuel. 332, 126169 (2023). https://doi.org/10.1016/j.fuel.2022.126169 [CrossRef] [Google Scholar]
- T. Kittivech, S. Fukuda, Empty fruit bunch (EFB) gasification in a bubbling. Energies. 12, 4336–4352 (2019) [CrossRef] [Google Scholar]
- M. Klavins, V. Bisters, J. Burlakovs, Small scale gasification application and perspectives in circular economy. Environ. Clim. Technol. 22, 42–54 (2018) [CrossRef] [Google Scholar]
- M. Dhrioua, W. Hassen, L. Kolsi, V. Anbumalar, A. S. Alsagri, M. N. Borjini, Gas distributor and bed material effects in a cold flow model of a novel multi-stage biomass gasifier. Biomass and Bioenergy. 126, 14–25 (2019). https://doi.org/10.1016/j.biombioe.2019.05.001 [CrossRef] [Google Scholar]
- A. E. Qureshi, D. E. Creasy, Fluidised bed gas distributors. Powder Technol. 22, 113–119 (1979). https://doi.org/10.1016/0032-5910(79)85013-5 [CrossRef] [Google Scholar]
- D. Geldart, J. Baeyens, The design of distributors for gas-fluidized beds. Powder Technol. 42, 67–78 (1985). https://doi.org/10.1016/0032-5910(85)80039-5 [CrossRef] [Google Scholar]
- A. Coghe, M. Mantegna, G. Sotgia, Fluid dynamic aspects of electrostatic precipatators: turbulence characteristics in scale models. J. Fluids Eng. Trans. ASME. 125, 694–700 (2003). https://doi.org/10.1115/1.1593704 [CrossRef] [Google Scholar]
- Sahin & Ward-Smith, Effect of perforated plates on wide-angle diffuser-exit velocity profiles. J. af Wind Eng. Ind. Aerodyn. 34, 113–125 (1990). https://doi.org/10.1016/0167-6105(90)90139-4 [CrossRef] [Google Scholar]
- M. N. Noui-Mehidi, J. Wu, I. D. Šutalo, C. Grainger, Velocity distribution downstream of an asymmetric wide-angle diffuser. Exp. Therm. Fluid Sci. 29, 649–657 (2005). https://doi.org/10.1016/j.expthermflusci.2004.10.002 [CrossRef] [Google Scholar]
- B. Sahin, A. J. Ward-Smith, The pressure distribution in and flow characteristics of wide-angle diffusers using perforated plates for flow control with application to electrostatic precipitators. Int. J. Mech. Sci. 35, 117–127 (1993). https://doi.org/10.1016/0020-7403(93)90070-B [CrossRef] [Google Scholar]
- Ramakrishnan, A. agadish Kumar Singh, Sahoo, S. S. Mohapatra, CFD simulation for coal gasification in fluidized bed gasifier. Energy. 281, 128272 (2023). https://doi.org/10.1016/j.energy.2023.128272 [CrossRef] [Google Scholar]
- W. -C. Yang, Handbook of fluidization and fluid-particle systems, (Siemens Westinghouse Power Corporation Pittsburgh, Pennsylvania, 2003) [CrossRef] [Google Scholar]
- Y. Xuliang, Z. Yuemin, L. Zhenfu, C. Zengqiang, S. Shulei, Effects of sintered metal distributor on fluidization quality of the air dense medium fluidized bed. Min. Sci. Technol. 21, 681–685 (2011). https://doi.org/10.1016/j.mstc.2011.03.009 [Google Scholar]
- K. Vakhshouri, J. R. Grace, Effects of the plenum chamber volume and distributor geometry on fluidized bed hydrodynamics. Particuology. 8, 2–12 (2010). https://doi.org/10.1016/j.partic.2009.05.005 [CrossRef] [Google Scholar]
- A. Shukrie, Air distributor designs for fluidized bed combustors: a review. Eng. Technol. Appl. Sci. Res. 6, 1029–1034 (2016). https://doi.org/10.48084/etasr.688 [CrossRef] [Google Scholar]
- L. Huilin, Z. Yunhua, J. Ding, Z. Linyan, L. Yaning, S. Ana, Numerical modeling of gas tubular distributors in bubbling fluidized-bed incinerators. Ind. Eng. Chem. Res. 45, 6818–6827 (2006) [CrossRef] [Google Scholar]
- V. Akbari et al., Evaluation of hydrodynamic behavior of the perforated gas distributor of industrial gas phase polymerization reactor using CFD-PBM coupled model. Comput. Chem. Eng. 82, 344–361 (2015). https://doi.org/10.1016/j.compchemeng.2015.07.001 [CrossRef] [Google Scholar]
- N. Raza, M. Ahsan, M. T. Mehran, S. R. Naqvi, I. Ahmad, Computational analysis of the hydrodynamic behavior for different air distributor designs of fluidized bed gasifier. Front. Energy Res. 9, 1–16 (2021). https://doi.org/10.3389/fenrg.2021.692066 [CrossRef] [Google Scholar]
- L. S. Leung, Design of gas distributors and prediction of bubble size in large gas-solids fluidized beds. Powder Technol. 6, 189–193 (1972). https://doi.org/10.1016/0032-5910(72)83012-2 [CrossRef] [Google Scholar]
- S. Valin et al., Fluidised bed gasification of diverse biomass. Energies. 13, 1–19 (2020) [Google Scholar]
- L. E. Fryda, K. D. Panopoulos, E. Kakaras, Agglomeration in fluidised bed gasification of biomass. Powder Technol. 181, 307–320 (2008). https://doi.org/10.1016/j.powtec.2007.05.022 [CrossRef] [Google Scholar]
- A. S. M. Yudin, A. N. Oumer, N. M. F. Roslan, M. A. Zulkarnain, Computational and experimental study on pressure drop in a fluidised bed with different air distributor designs. Int. J. Automot. Mech. Eng. 17, 8043–8051 (2020) [CrossRef] [Google Scholar]
- A. Ghaly, A. Ergudenler, and V. Ramakrishnan, Effect of distributor plate configuration on pressure drop in a bubbling fluidized bed reactor. Adv. Res. 3, 251–268 (2015) [CrossRef] [Google Scholar]
- J. P. Sutherland, The measurement of pressure drop across a gas fluidized bed. Chem. Eng. Sci. 19, 839–841 (1964). https://doi.org/10.1016/0009-2509(64)85096-X [CrossRef] [Google Scholar]
- C. R. Hammond, Handbook of chemistry and physics 81st edition, (CRC press, 2004) [Google Scholar]
- D. Geldart, Types of gas fhidization. Powder Technol. 7, 285–292 (1973) [CrossRef] [Google Scholar]
- Daizo Kunii, Fluidization Engineering, (Second Ed. Butterworth—Heinemann Boston, 1991) [Google Scholar]
- S. Ergun, Fluid flow through packed columns. Chem. Eng. Prog. 48, 89–94 (1952) [Google Scholar]
- J. G. Yates, P. Lettieri, Fluidized-bed reactors: processes and operating conditions, Springer International Publishing. 26, 10 (2016) [Google Scholar]
- Marcio L. de Souza-Santos, Solid fuels combustion and gasification modeling simulation and equipment operations second edition, (Taylor and Francis Group, LLC, 2010) [Google Scholar]
- J.J. Ramirez, J.D. Martinez, Basic design of a fluidized bed gasifier for rice husk. Lat. Am. Appl. Res. 37, 299–306 (2007) [Google Scholar]
- P. K. Chatterjee, A. B. Datta, K. M. Kundu, Fluidized bed gasification of coal. Can. J. Chem. Eng. 73, 204–210 (1995). https://doi.org/10.1002/cjce.5450730206 [CrossRef] [Google Scholar]
- C. Sobrino, N. Ellis, M. De Vega, Distributor effects near the bottom region of turbulent fluidized beds. Powder Technol. 189, 25–33 (2009). https://doi.org/10.1016/j.powtec.2008.05.012 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.