Open Access
Issue
E3S Web Conf.
Volume 576, 2024
The 13th Engineering International Conference “Sustainable Development Through Green Engineering and Technology” (EIC 2024)
Article Number 04011
Number of page(s) 10
Section Renewable and Sustainable Energy
DOI https://doi.org/10.1051/e3sconf/202457604011
Published online 03 October 2024
  1. K. Whiting, L. G. Carmona, and T. Sousa, “A review of the use of exergy to evaluate the sustainability of fossil fuels and non-fuel mineral depletion,” Renewable and Sustainable Energy Reviews, vol. 76. Elsevier Ltd, pp. 202–211, (2017). doi: 10.1016/j.rser.2017.03.059. [CrossRef] [Google Scholar]
  2. V. Etacheri, R. Marom, R. Elazari, G. Salitra, and D. Aurbach, “Challenges in the development of advanced Li-ion batteries: A review,” Energy and Environmental Science, vol. 4, no. 9. pp. 3243–3262, Sep. (2011). doi: 10.1039/c1ee01598b. [CrossRef] [Google Scholar]
  3. A. D. Bank, Handbook on Battery Energy Storage System. Manila, Philippines: Asian Development Bank, (2018). doi: 10.22617/TCS189791-2. [Google Scholar]
  4. Z. Ling, F. Wang, X. Fang, X. Gao, and Z. Zhang, “A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling,” Appl Energy, vol. 148, pp. 403–409, Jun. (2015), doi: 10.1016/j.apenergy.2015.03.080. [CrossRef] [Google Scholar]
  5. D. Deng, Li-ion batteries: Basics, progress, and challenges, vol. 3, no. 5. John Wiley and Sons Ltd, (2015). doi: 10.1002/ese3.95. [Google Scholar]
  6. S. Mallick and D. Gayen, “Thermal behaviour and thermal runaway propagation in lithium-ion battery systems – A critical review,” Journal of Energy Storage, vol. 62. Elsevier Ltd, Jun. 01, (2023). doi: 10.1016/j.est.2023.106894. [CrossRef] [Google Scholar]
  7. D. Bernardi, E. Pawlikowski, and J. Newman, “A GENERAL ENERGY BALANCE FOR BATTERY SYSTEMS,” Soc. vol. 132, no. 1, pp. 5–12, (1985) [Google Scholar]
  8. J. R. Patel and M. K. Rathod, “Recent developments in the passive and hybrid thermal management techniques of lithium-ion batteries,” Journal of Power Sources, vol. 480. Elsevier B.V., Dec. 31, (2020). doi: 10.1016/j.jpowsour.2020.228820. [CrossRef] [Google Scholar]
  9. M. Akbarzadeh et al., “A comparative study between air cooling and liquid cooling thermal management systems for a high-energy lithium-ion battery module,” Appl Therm Eng, vol. 198, Nov. (2021), doi: 10.1016/j.applthermaleng.2021.117503. [CrossRef] [Google Scholar]
  10. Y. Yang, X. Xu, Y. Zhang, H. Hu, and C. Li, “Synergy analysis on the heat dissipation performance of a battery pack under air cooling,” Springer-Verlag GmbH Germany, (2020), doi: 10.1007/s11581-020-03676-5/Published. [Google Scholar]
  11. M. M. Khan, M. Alkhedher, M. Ramadan, and M. Ghazal, “Hybrid PCM-based thermal management for lithium-ion batteries: Trends and challenges,” J Energy Storage, vol. 73, p. 108775, Dec. (2023), doi: 10.1016/j.est.2023.108775. [CrossRef] [Google Scholar]
  12. H. Sait, “Cooling a plate lithium-ion battery using a thermoelectric system and evaluating the geometrical impact on the performance of heatsink connected to the system,” J Energy Storage, vol. 52, Aug. (2022), doi: 10.1016/j.est.2022.104692. [CrossRef] [Google Scholar]
  13. X. Xu, X. Chen, J. Shen, J. Kong, H. Zhang, and F. Zhou, “Thermal management system for prismatic battery module with biomimetic cephalofoil fin and film heater,” Appl Therm Eng, vol. 227, Jun. (2023), doi: 10.1016/j.applthermaleng.2023.120379. [Google Scholar]
  14. Z. Liu, M. Cao, Y. Zhang, J. Li, G. Jiang, and H. Shi, “Thermal management of cylindrical battery pack based on a combination of silica gel composite phase change material and copper tube liquid cooling,” J Energy Storage, vol. 71, Nov. (2023), doi: 10.1016/j.est.2023.108205. [Google Scholar]
  15. Z. Zhou et al., “Experimental study on the thermal management performance of phase change material module for the large format prismatic lithium-ion battery,” Energy, vol. 238, Jan. (2022), doi: 10.1016/j.energy.2021.122081. [CrossRef] [Google Scholar]
  16. Z. Leng, Y. Yuan, X. Cao, C. Zeng, W. Zhong, and B. Gao, “Heat pipe/phase change material thermal management of Li-ion power battery packs: A numerical study on coupled heat transfer performance,” Energy, vol. 240, Feb. (2022), doi: 10.1016/j.energy.2021.122754. [CrossRef] [Google Scholar]
  17. G. Wu, F. Liu, S. Li, N. Luo, Z. Liu, and Y. Li, “Research on Performance Optimization of Liquid Cooling and Composite Phase Change Material Coupling Cooling Thermal Management System for Vehicle Power Battery,” J Renew Mater, vol. 11, no. 2, pp. 707–730, (2023), doi: 10.32604/jrm.2022.022276. [CrossRef] [Google Scholar]
  18. C. Wang et al., “Liquid cooling based on thermal silica plate for battery thermal management system,” Int J Energy Res, vol. 41, no. 15, pp. 2468–2479, Dec. (2017), doi: 10.1002/er.3801. [CrossRef] [Google Scholar]
  19. C. Lan, J. Xu, Y. Qiao, and Y. Ma, “Thermal management for high power lithium-ion battery by minichannel aluminum tubes,” Appl Therm Eng, vol. 101, pp. 284–292, May (2016), doi: 10.1016/j.applthermaleng.2016.02.070. [CrossRef] [Google Scholar]
  20. W. Li, X. Zhuang, and X. Xu, “Numerical study of a novel battery thermal management system for a prismatic Li-ion battery module,” in Energy Procedia, Elsevier Ltd, (2019), pp. 4441–4446. doi: 10.1016/j.egypro.2019.01.771. [CrossRef] [Google Scholar]
  21. K. Chen, J. Hou, M. Song, S. Wang, W. Wu, and Y. Zhang, “Design of battery thermal management system based on phase change material and heat pipe,” Appl Therm Eng, vol. 188, Apr. (2021), doi: 10.1016/j.applthermaleng.2021.116665. [Google Scholar]
  22. K. C. Chiu, C. H. Lin, S. F. Yeh, Y. H. Lin, and K. C. Chen, “An electrochemical modeling of lithium-ion battery nail penetration,” J Power Sources, vol. 251, pp. 254–263, Apr. (2014), doi: 10.1016/j.jpowsour.2013.11.069. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.