Open Access
Issue |
E3S Web Conf.
Volume 576, 2024
The 13th Engineering International Conference “Sustainable Development Through Green Engineering and Technology” (EIC 2024)
|
|
---|---|---|
Article Number | 06007 | |
Number of page(s) | 17 | |
Section | Sustainable Materials and Green Chemistry | |
DOI | https://doi.org/10.1051/e3sconf/202457606007 | |
Published online | 03 October 2024 |
- A. T. Gontung, orthopaedic dan traumatology center di Manado, Sustainable Healthcare Architecture, J. Arsit. DASENG, vol. 6, no. 1, pp. 93–102, (2017) [Google Scholar]
- M. B. Donsu, A. C. Lengkong, and R. B. V. Rawung, Gambaran Penyembuhan Tulang Sekunder pada Fraktur dengan Anatomical Reduction Fixation Tipe Plate and Screw di RSUP Prof. Dr. R. D. Kandou Periode 2019 – 2020, e-CliniC, vol. 9, no. 1, pp. 149–153, (2021). doi: 10.35790/ecl.v9i1.32120 [CrossRef] [Google Scholar]
- C. C. Hung, W. C. Chen, C. T. Yang, C. K. Cheng, C. H. Chen, and Y. S. Lai, Interference screw versus Endoscrew fixation for anterior cruciate ligament reconstruction: A biomechanical comparative study in sawbones and porcine knees, J. Orthop. Transl., vol. 2, no. 2, pp. 82–90, (2014). doi: 10.1016/j.jot.2014.02.001 [Google Scholar]
- C. Hantes et al., “Revision anterior cruciate ligament,” ESSKA Instr. Course Lect. B. Geneva 2012, vol. 18, no. 1, pp. 87–97, (2013). doi: 10.1007/978-3-642-29446-4_7 [Google Scholar]
- P. A. Smith, J. P. Stannard, F. M. Pfeiffer, K. Kuroki, C. C. Bozynski, and J. L. Cook, Suspensory Versus Interference Screw Fixation for Arthroscopic Anterior Cruciate Ligament Reconstruction in a Translational Large-Animal Model, Arthrosc. J. Arthrosc. Relat. Surg., vol. 32, no. 6, pp. 1086–1097, (2016). doi: 10.1016/j.arthro.2015.11.026 [CrossRef] [Google Scholar]
- R. Barde, O. Cell, D. Redox, A. Abaza, S. Meille, and A. Nakajo, An Overview on Recent progresses and future perspective of biomaterials, in IOP Conference Series: Materials Science and Engineering PAPER, (2018). doi: 10.1088/1757899X/404/1/012013. [Google Scholar]
- M. T. Cadavi, “Rekayasa Material Filament Biocomposite Tandan Kosong Kelapa Sawit Dan Plastik High Density Polyethylene Untuk 3D Printing Berbasis Fused Deposition Modeling, Muhammad Tio Cadavi, vol. 3, no. 1, pp. 32–40, (2022) [Google Scholar]
- X. Li et al., In vitro degradation kinetics of pure PLA and Mg/PLA composite: Effects of immersion temperature and compression stress, Acta Biomater., vol. 48, pp. 468–478, (2017) doi: 10.1016/j.actbio.2016.11.001 [CrossRef] [PubMed] [Google Scholar]
- E. Malikmammadov, T. E. Tanir, A. Kiziltay, and V. Hasirci, PCL and PCL-Based Materials in Biomedical Applications, vol. 5063, no. October. Taylor & Francis, (2017). doi: 10.1080/09205063.2017.1394711 [Google Scholar]
- E. Åkerlund, A. Diez-Escudero, A. Grzeszczak, and C. Persson, The Effect of PCL Addition on 3D-Printable PLA/HA Composite Filaments for the Treatment of Bone Defects, Polymers (Basel)., vol. 14, no. 16, (2022). doi: 10.3390/polym14163305 [CrossRef] [PubMed] [Google Scholar]
- A. W. Gebisa and H. G. Lemu, Investigating effects of Fused-deposition modeling (FDM) processing parameters on flexural properties of ULTEM 9085 using designed experiment, Materials (Basel)., vol. 11, no. 4, pp. 1–23, (2018). doi: 10.3390/ma11040500 [CrossRef] [PubMed] [Google Scholar]
- M. Mohseni, D. W. Hutmacher, and N. J. Castro, Independent evaluation of medical-grade bioresorbable filaments for fused deposition modelling/fused filament fabrication of tissue engineered constructs, Polymers (Basel)., vol. 10, no. 1, (2018). doi: 10.3390/polym10010040 [CrossRef] [PubMed] [Google Scholar]
- K. Tappa and U. Jammalamadaka, “Novel biomaterials used in medical 3D printing techniques,” J. Funct. Biomater., vol. 9, no. 1, (2018). doi: 10.3390/jfb9010017 [CrossRef] [Google Scholar]
- A. Setiawan, Pengaruh Parameter Proses Ektrusi 3D Printer Terhadap Sifat Mekanis Cetak Komponen Berbahan Filament PLA (Poly Lactide Acid), J. Tek. STTKD, vol. 4, no. 2, pp. 2460–1608, (2017) [Google Scholar]
- R. A. Faisal and Herianto, Analisis Pengaruh Parameter Operasional Mesin Ekstrusi Terhadap Konsistensi Produk Filamen,” Semin. Nas. Tek. Ind. Univ. Gadjah Mada, Indonesia (2019) [Google Scholar]
- L. P. S. Hartanti, F. W. Nugraha, P. W. Anggoro, R. Ismail, J. Jamari, and A. P. Bayuseno, Sustainable additive manufacturing of interference screws made from eco-friendly filament for anterior cruciate ligament reconstruction, in IOP Conference Series: Earth and Environmental Science, IOP Publishing, (2023) p. 12065. [Google Scholar]
- F. Wang et al., “Fabrication and Characterization of PCL/HA Filament as a 3D Printing Material Using Thermal Extrusion Technology for Bone Tissue Engineering,” Polymers (Basel)., vol. 14, no. 4, (2022). doi: 10.3390/polym14040669 [Google Scholar]
- R. Ismail et al., “Characterization of PLA / PCL / Green Mussel Shells,” Materials (Basel)., 2022. [Google Scholar]
- R. Ismail et al., “The potential use of green mussel (Perna Viridis) shells for synthetic calcium carbonate polymorphs in biomaterials,” J. Cryst. Growth, vol. 572, no. August, p. 126282, 2021, doi: 10.1016/j.jcrysgro.2021.126282. [CrossRef] [Google Scholar]
- S. I. Park, “No Title,” http://www.sunlugw.com/En/PLA-PG7007757. [Google Scholar]
- S. I. Park, “Spesification PCL,” Http://Www.Sunlugw.Com/En/PCL-PG7008429. [Google Scholar]
- D. B. Camasão and D. Mantovani, “The mechanical characterization of blood vessels and their substitutes in the continuous quest for physiological-relevant performances. A critical review,” Mater. Today Bio, vol. 10, no. March, 2021, doi: 10.1016/j.mtbio.2021.100106. [Google Scholar]
- W. Zhou, R. Apkarian, Z. L. Wang, and D. Joy, “Fundamentals of scanning electron microscopy (SEM),” Scanning Microsc. Nanotechnol. Tech. Appl., pp. 1–40, 2007, doi: 10.1007/978-0-387-39620-0_1. [Google Scholar]
- B. Dery and L. Zaixiang, “Scanning Electron Microscopy (SEM) as an Effective Tool for Determining the Morphology and Mechanism of Action of Functional Ingredients,” Food Rev. Int., vol. 00, no. 00, pp. 1–20, 2021, doi: 10.1080/87559129.2021.1939368. [Google Scholar]
- J. Na, G. Kim, S. H. Kang, S. J. Kim, and S. Lee, “Deep learning-based discriminative refocusing of scanning electron microscopy images for materials science,” Acta Mater., vol. 214, p. 116987, 2021, doi: 10.1016/j.actamat.2021.116987. [CrossRef] [Google Scholar]
- A. Budi, Suyitno, and M. Muslim, “Degradation of mechanically surface treated az31b magnesium alloy in 3.5 wt.% nacl solution,” Mater. Sci. Forum, vol. 948 MSF, pp. 237–242, 2019, doi: 10.4028/www.scientific.net/MSF.948.237. [CrossRef] [Google Scholar]
- D. Mei, S. V. Lamaka, X. Lu, and M. L. Zheludkevich, “Selecting medium for corrosion testing of bioabsorbable magnesium and other metals – A critical review,” Corros. Sci., vol. 171, no. March, p. 108722, 2020, doi: 10.1016/j.corsci.2020.108722. [CrossRef] [Google Scholar]
- A. Anindyajati, A. E. Tontowi, and P. Dewo, “Study on X-ray diffraction, infra-red spectroscopy, and microstructure of CoHA-gelatin-PVA biocomposite,” Proc. Int. Conf. Instrumentation, Commun. Inf. Technol. Biomed. Eng. 2011, ICICI-BME 2011, no. November, pp. 246–248, 2011, doi: 10.1109/ICICI-BME.2011.6108618. [Google Scholar]
- Z. Khurshid et al., “Extraction of Hydroxyapatite from Camel Bone for Bone Tissue Engineering Application,” Molecules, vol. 27, no. 22, pp. 1–13, 2022, doi: 10.3390/molecules27227946. [Google Scholar]
- M. Sulistyani and N. Huda, “Perbandingan Metode Transmisi dan Reflektansi Pada Pengukuran Polistirena Menggunakan Instrumentasi Spektroskopi Fourier Transform Infra Red,” Indones. J. Chem. Sci., vol. 7, no. 2, pp. 195–198, 2018. [Google Scholar]
- N. K. de Moura et al., “Production and characterization of porous polymeric membranes of pla/pcl blends with the addition of hydroxyapatite,” J. Compos. Sci., vol. 3, no. 2, 2019, doi: 10.3390/jcs3020045. [Google Scholar]
- S. Pitjamit, K. Thunsiri, W. Nakkiew, T. Wongwichai, P. Pothacharoen, and W. Wattanutchariya, “The Possibility of Interlocking Nail Fabrication from FFF 3D Printing PLA/PCL/HA Composites Coated by,” Materials (Basel)., vol. 13, no. 1564, 2020. [CrossRef] [PubMed] [Google Scholar]
- S. Shojaei, M. Nikuei, V. Goodarzi, M. Hakani, H. A. Khonakdar, and M. R. Saeb, “Disclosing the role of surface and bulk erosion on the viscoelastic behavior of biodegradable poly(ε-caprolactone)/poly(lactic acid)/hydroxyapatite nanocomposites,” J. Appl. Polym. Sci., vol. 136, no. 10, pp. 1–12, 2019, doi: 10.1002/app.47151. [CrossRef] [Google Scholar]
- E. Mystiridou, A. C. Patsidis, and N. Bouropoulos, “Development and characterization of 3D printed multifunctional bioscaffolds based on PLA/PCL/HAp/BaTiO3 composites,” Appl. Sci., vol. 11, no. 9, 2021, doi: 10.3390/app11094253. [CrossRef] [Google Scholar]
- Y. Lu, Y. C. Chen, and P. H. Zhang, “Preparation and characterisation of polylactic acid (PLA)/polycaprolactone (PCL) composite microfibre membranes,” Fibres Text. East. Eur., vol. 24, no. 3, pp. 17–25, 2016, doi: 10.5604/12303666.1196607. [CrossRef] [Google Scholar]
- S. Hassanajili, A. Karami-Pour, A. Oryan, and T. Talaei-Khozani, “Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering,” Mater. Sci. Eng. C, vol. 104, no. July, p. 109960, 2019, doi: 10.1016/j.msec.2019.109960. [CrossRef] [Google Scholar]
- S. Farah, D. G. Anderson, and R. Langer, “Physical and mechanical properties of PLA, and their functions in widespread applications — A comprehensive review,” Adv. Drug Deliv. Rev., vol. 107, pp. 367–392, 2016, doi: 10.1016/j.addr.2016.06.012. [CrossRef] [Google Scholar]
- X. He, S. Zhang, Y. Jiang, M. Li, J. Yuan, and G. Wang, “Influence mechanism of filling ratio on solid-phase denitrification with polycaprolactone as biofilm carrier,” Bioresour. Technol., vol. 337, no. April, p. 125401, 2021, doi: 10.1016/j.biortech.2021.125401. [CrossRef] [Google Scholar]
- K. H. E. Kroemer, H. J. Kroemer, and K. E. Kroemer-Elbert, Engineering physiology: Bases of human factors engineering/ergonomics. 2010. doi: 10.1007/978-3-642-12883-7. [Google Scholar]
- Dynisco, “The Screw and Barrel System,” vol. 1, no. 508, pp. 1–31, 2017. [Google Scholar]
- D. Li, L. Zhou, X. Wang, L. He, and X. Yang, “Effect of crystallinity of polyethylene with different densities on breakdown strength and conductance property,” Materials (Basel)., vol. 12, no. 11, 2019, doi: 10.3390/ma12111746. [Google Scholar]
- M. S. Alsoufi et al., “Experimental Characterization of the Influence of Nozzle Temperature in FDM 3D Printed Pure PLA and Advanced PLA+,” Am. J. Mech. Eng., vol. 7, no. 2, pp. 45–60, 2019, doi: 10.12691/ajme-7-2-1. [CrossRef] [Google Scholar]
- B. Akhoundi, M. Nabipour, F. Hajami, and D. Shakoori, “An Experimental Study of Nozzle Temperature and Heat Treatment (Annealing) Effects on Mechanical Properties of High-Temperature Polylactic Acid in Fused Deposition Modeling,” Polym. Eng. Sci., vol. 60, no. 5, pp. 979–987, 2020, doi: 10.1002/pen.25353. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.