Open Access
Issue
E3S Web Conf.
Volume 576, 2024
The 13th Engineering International Conference “Sustainable Development Through Green Engineering and Technology” (EIC 2024)
Article Number 06008
Number of page(s) 9
Section Sustainable Materials and Green Chemistry
DOI https://doi.org/10.1051/e3sconf/202457606008
Published online 03 October 2024
  1. Badan Pusat Statistik, (2022). Available: https://www.bps.go.id/indicator/53/1498/1/luas-panen-produksi-dan-produktivitas-padi-menurut-provinsi.html [Google Scholar]
  2. S. Steven, E. Restiawaty, P. Pasymi, and Y. Bindar, An appropriate acid leaching sequence in rice husk ash extraction to enhance the produced green silica quality for sustainable industrial silica gel purpose. J. Taiwan Inst. Chem. Eng. 122, 51–57 (2021). doi: 10.1016/j.jtice.2021.04.053. [CrossRef] [Google Scholar]
  3. E. N. Rufai, I.A; Uche, O.A.U; and Ogork, Biosilica From Rice Husk Ash As a New Engineering Raw, 1–20 (2012) [Google Scholar]
  4. S. Azat, A. V. Korobeinyk, K. Moustakas, and V. J. Inglezakis, Sustainable production of pure silica from rice husk waste in Kazakhstan, J. Clean. Prod., 217, 352–359 (2019), doi: 10.1016/j.jclepro.2019.01.142. [CrossRef] [Google Scholar]
  5. A. Mahmud, F. Ahmad, and A. A. Farezzuan, Acid Leaching As Efficient Chemical Treatment For Rice Husk In Production Of Amorphous Silica Nanoparticles, 11 13384–13388 (2016) [Google Scholar]
  6. W. Xu et al., Comparative study of water-leaching and acid-leaching pretreatment on the thermal stability and reactivity of biomass silica for viability as a pozzolanic additive in cement. Materials (Basel). 11, (2018). doi: 10.3390/ma11091697. [Google Scholar]
  7. J. Umeda and K. Kondoh, High-purity amorphous silica originated in rice husks via carboxylic acid leaching process. J. Mater. Sci. 43, 7084–7090 (2008). doi: 10.1007/s10853-008-3060-9. [CrossRef] [Google Scholar]
  8. R. Rumman, M. S. Bari, T. Manzur, M. R. Kamal, and M. A. Noor, A Durable Concrete Mix Design Approach using Combined Aggregate Gradation Bands and Rice Husk Ash Based Blended Cement. J. Build. Eng. 30, 101303 (2020). doi: 10.1016/j.jobe.2020.101303. [CrossRef] [Google Scholar]
  9. Z. He, L. Li, and S. Du, Creep analysis of concrete containing rice husk ash. Cem. Concr. Compos. 80, 190–199 (2017). doi: 10.1016/j.cemconcomp.2017.03.014. [CrossRef] [Google Scholar]
  10. A. Noaman, R. Karim, and N. Islam, Heliyon Comparative study of pozzolanic and fi ller effect of rice husk ash on the mechanical properties and microstructure of brick aggregate concrete. Heliyon. 5, e01926 (2019). doi: 10.1016/j.heliyon.2019.e01926. [CrossRef] [PubMed] [Google Scholar]
  11. N. Makul, Results in Materials Combined use of untreated-waste rice husk ash and foundry sand waste in high-performance self-consolidating concrete. Results Mater. 1, 100014 (2019). doi: 10.1016/j.rinma.2019.100014. [CrossRef] [Google Scholar]
  12. P. Safety, S. Arcaro, U. F. De Tocantins, and C. P. Bergmann, Glass foams produced from soda-lime glass waste and rice husk ash applied as partial substitutes for concrete aggregates. (2020). doi: 10.1016/j.psep.2019.05.044. [Google Scholar]
  13. P. Lertwattanaruk, G. Sua-iam, and N. Makul, Effects of calcium carbonate powder on the fresh and hardened properties of self-consolidating concrete incorporating untreated rice husk ash. J. Clean. Prod. 172, 3265–3278 (2018). doi: 10.1016/j.jclepro.2017.10.336. [CrossRef] [Google Scholar]
  14. R. I. Umasabor and J. O. Okovido, Fire resistance evaluation of rice husk ash concrete. Heliyon. 1, e01035 (2018). doi: 10.1016/j.heliyon.2018.e01035. [CrossRef] [PubMed] [Google Scholar]
  15. V. Van, C. Rößler, D. Bui, and H. Ludwig, Construc tion and Buildi ng Materia ls Mesoporous structure and pozzolanic reactivity of rice husk ash in cementitious system. Constr. Build. Mater. 43, 208–216 (2013). doi: 10.1016/j.conbuildmat.2013.02.004. [CrossRef] [Google Scholar]
  16. G. Chagas et al., Cement & Concrete Composites Influence of particle size and specific surface area on the pozzolanic activity of residual rice husk ash, Cem. Concr. Compos. 33, 529–53 (2011). doi: 10.1016/j.cemconcomp.2011.02.005. [CrossRef] [Google Scholar]
  17. S. Zhang, T. Chen, and Y. Xiong, Effect of Washing Pretreatment with Aqueous Fraction of Bio-Oil on Pyrolysis Characteristic of Rice Husk and Preparation of Amorphous Silica. Waste and Biomass Valorization. 9, 861–869 (2018). doi: 10.1007/s12649-017-9845-9. [CrossRef] [Google Scholar]
  18. X. Zhang, J. Yue, Y. Zhao, Z. Yan, G. Zhu, and L. Liu, Synthesis of tetragonal BaTiO 3 nano-particle via a novel tartaric acid co-precipitation process. Ceram. Int. 47, 7263–7267 (2021). doi: 10.1016/j.ceramint.2020.11.006. [CrossRef] [Google Scholar]
  19. R. Nebesnyi et al., Applied Catalysis A , General Aldol condensation of acetic acid and formaldehyde to acrylic acid over a hydrothermally treated silica gel-supported B-P-VW oxide. Appl. Catal. A, Gen. 594, 117472 (2020). doi: 10.1016/j.apcata.2020.117472. [CrossRef] [Google Scholar]
  20. L. Zaslavsky and B. Shoemaker, Tartaric acid | H2C4H4O6 PubChem, PubChem, (2021) [Google Scholar]
  21. Sodium silicate | Na2SiO3 PubChem, PubChem Nationak Library of Medicine. [Google Scholar]
  22. Pubchem, acetic acid | CH3COOH PubChem. Available: https://pubchem.ncbi.nlm.nih.gov/compound/176#section=Top [Google Scholar]
  23. Pubchem, Silicon dioxide | SiO2 PubChem, National Library of Medicine. Available: https://pubchem.ncbi.nlm.nih.gov/compound/24261 [Google Scholar]
  24. S. Chandrasekhar, P. N. Pramada, and L. Praveen, Effect of organic acid treatment on the properties of rice husk silica. J. Mater. Sci. 40, 6535–6544 (2005). doi: 10.1007/s10853-005-1816-z. [CrossRef] [Google Scholar]
  25. S. Tang et al., Ferrous ion-tartaric acid chelation promoted calcium peroxide fenton-like reactions for simulated organic wastewater treatment. J. Clean. Prod. 268, 122253 (2020). doi: 10.1016/j.jclepro.2020.122253. [CrossRef] [Google Scholar]
  26. D. Han et al., New insights into the role of organic chelating agents in Fe ( II ) activated persulfate processes. Chem. Eng. J. 269, 425–433 (2015). doi: 10.1016/j.cej.2015.01.106. [CrossRef] [Google Scholar]
  27. K. Straif et al., A review of human carcinogens--part C: metals, arsenic, dusts, and fibres. Lancet Oncol. 10, 453–454 (2009). doi: 10.1016/s1470-2045(09)70134-2. [CrossRef] [PubMed] [Google Scholar]
  28. A. S. Costa and C. M. Paranhos, Systematic evaluation of amorphous silica production from rice husk ashes. 192, 688–697 (2018). doi: 10.1016/j.jclepro.2018.05.028. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.