Open Access
Issue
E3S Web Conf.
Volume 576, 2024
The 13th Engineering International Conference “Sustainable Development Through Green Engineering and Technology” (EIC 2024)
Article Number 06010
Number of page(s) 11
Section Sustainable Materials and Green Chemistry
DOI https://doi.org/10.1051/e3sconf/202457606010
Published online 03 October 2024
  1. J. Junaedi, Indonesia Is the Biggest Grant of Oil Palm Crude Palm Oil (Cpo) in the World But Facing the Problem of Oil Scarcity Surprise Cooking Oil Prices. Int. J. Soc. Sci. 2, 1779 (2022). https://doi.org/10.53625/ijss.v2i4.4137 [CrossRef] [Google Scholar]
  2. B. S. Orozco Colonia, A. Lorenci Woiciechowski, R. Malanski, L. A. Junior Letti, and C. R. Soccol, Pulp improvement of oil palm empty fruit bunches associated to solidstate biopulping and biobleaching with xylanase and lignin peroxidase cocktail produced by Aspergillus sp. LPB-5. Bioresour. Technol. 285, 121361 (2019) https://doi.org/10.1016/j.biortech.2019.121361 [CrossRef] [Google Scholar]
  3. H. E. Putra et al., Hydrothermal treatment of empty fruit bunches for enhanced solid fuel production using palm oil mill effluent as a liquid stream. Bioresour. Technol. Reports. 25, 101761 (2024). https://doi.org/10.1016/j.biteb.2024.101761 [CrossRef] [Google Scholar]
  4. H. Hermansyah et al. Delignification of oil palm empty fruit bunch using peracetic acid and alkaline peroxide combined with the ultrasound. Int. J. Technol. 10, 1523 (2019). https://doi.org/10.14716/ijtech.v10i8.3464 [CrossRef] [Google Scholar]
  5. S. Novianti, M. K. Biddinika, P. Prawisudha, and K. Yoshikawa, Upgrading of Palm Oil Empty Fruit Bunch Employing Hydrothermal Treatment in Lab-scale and Pilot Scale. Procedia Environ. Sci. 20, 46 (2014). https://doi.org/10.1016/j.proenv.2014.03.008 [CrossRef] [Google Scholar]
  6. J. Wolfs and M. A. R. Meier, A more sustainable synthesis approach for cellulose acetate using the DBU/CO2 switchable solvent system. 4410 (2021). https://doi.org/10.1039/d1gc01508g [Google Scholar]
  7. N. Ikhtiarini, M. Masruri, S. Mariyah Ulfa, and W. Widodo, Synthesis and Characterization of Cellulose Acetate and Nanocellulose Acetate from Sengon Agroindustrial Waste (Paraserianthes falcataria). J. Pure Appl. Chem. Res. 11, 214 (2022). https://doi.org/10.21776/ub.jpacr.2022.011.03.644 [CrossRef] [Google Scholar]
  8. R. Battisti, E. Hafemann, C. A. Claumann, R. A. F. Machado, and C. Marangoni, Synthesis and characterization of cellulose acetate from royal palm tree agroindustrial waste. Polym. Eng. Sci. 59, 891 (2019). https://doi.org/10.1002/pen.25034 [CrossRef] [Google Scholar]
  9. E. Rasooly-Garmaroody, S. Ebadi, O. Ramezani, and R. Behrooz, Insights Into Activation of Dissolving Pulp Preceding Cellulose Acetylation. BioResources, (2022). https://doi.org/10.15376/biores.17.2.2157-2175 [Google Scholar]
  10. M. Chen et al., Solvent-Free Acetylation of Cellulose by 1-Ethyl-3-methylimidazolium Acetate-Catalyzed Transesterification. ACS Sustain. Chem. Eng. 7, 16971 (2019). https://doi.org/10.1021/acssuschemeng.8b06333 [CrossRef] [Google Scholar]
  11. N. C. Homem and M. T. P. Amorim, Synthesis of cellulose acetate using as raw material textile wastes, Mater. Today Proc. 31, 315 (2019). https://doi.org/10.1016/j.matpr.2020.01.494 [Google Scholar]
  12. F. Dong, M. Yan, C. Jin, and S. Li, Characterization of type-II acetylated cellulose nanocrystals with various degree of substitution and its compatibility in PLA films. Polymers (Basel). 9, 0 (2017) https://doi.org/10.3390/polym9080346 [Google Scholar]
  13. T. Yi et al., From cellulose to cellulose nanofibrils—a comprehensive review of the preparation and modification of cellulose nanofibrils. Materials. 13, 22 (2020). https://doi.org/10.3390/ma13225062 [Google Scholar]
  14. R. F. S. Barbosa, A. G. Souza, F. F. Ferreira, and D. S. Rosa, Isolation and acetylation of cellulose nanostructures with a homogeneous system. Carbohydr. Polym. 218, 208 (2019). https://doi.org/10.1016/j.carbpol.2019.04.072 [CrossRef] [Google Scholar]
  15. R. O. Asriza, N. Nurhadini, and F. Arkan, Synthesis and Characterization of Cellulose Acetate from α-Cellulose of Paper Waste, Indones. J. Fundam. Appl. Chem. 8, 82 (2023). https://doi.org/10.24845/ijfac.v8.i2.82 [CrossRef] [Google Scholar]
  16. A. Sharma, M. Thakur, M. Bhattacharya, T. Mandal, and S. Goswami, Commercial application of cellulose nano-composites – A review. Biotechnol. Reports. 21, 00316 (2019). https://doi.org/10.1016/j.btre.2019.e00316 [CrossRef] [Google Scholar]
  17. W. Alhassani, B. G. Alhogbi, and M. A. Hussein, Efficient adsorbents for oil spill removal using a cellulose acetate-based natural fibers developed by zinc oxide bionanocomposites. J. Indian Chem. Soc. 101, 101179 (2024). https://doi.org/10.1016/j.jics.2024.101179 [CrossRef] [Google Scholar]
  18. S. Romão, A. Bettencourt, and I. A. C. Ribeiro, Novel Features of Cellulose-Based Films as Sustainable Alternatives for Food Packaging. Polymers (Basel). 14, 0 (2022). https://doi.org/10.3390/polym14224968 [CrossRef] [PubMed] [Google Scholar]
  19. Y. C. Kuo, S. P. Lin, C. W. Lin, Y. C. Tsai, T. S. Wu, and I. L. Hsiao, Enhanced Antibacterial Activity in Cellulose Acetate Films with Surface Defect-Rich MgO Nanoparticles for Sustainable Active Packaging Applications. ACS Appl. Nano Mater. 6, 19915 (2023). https://doi.org/10.1021/acsanm.3c03724 [CrossRef] [Google Scholar]
  20. S. D. Topel, S. Balcioglu, B. Ateş, M. Asilturk, Ö. Topel, and M. B. Ericson, Cellulose acetate encapsulated upconversion nanoparticles – A novel theranostic platform. Mater. Today Commun. 26 (2021). https://doi.org/10.1016/j.mtcomm.2020.101829 [Google Scholar]
  21. A. Bonifacio, L. Bonetti, E. Piantanida, and L. De Nardo, Plasticizer Design Strategies Enabling Advanced Applications of Cellulose Acetate. Eur. Polym. J. 197, 112360 (2023), https://doi.org/10.1016/j.eurpolymj.2023.112360 [CrossRef] [Google Scholar]
  22. P. C. Nath et al., Sustainable production of cellulosic biopolymers for enhanced smart food packaging: An up-to-date review. Int. J. Biol. Macromol. 273, 133090 (2024). https://doi.org/10.1016/j.ijbiomac.2024.133090 [CrossRef] [Google Scholar]
  23. W. Wei et al., An Al2O3-cellulose acetate-coated textile for human body cooling, Sol. Energy Mater. Sol. Cells, 211, 110525 (2020). https://doi.org/10.1016/j.solmat.2020.110525 [CrossRef] [Google Scholar]
  24. B. Hudaib, Z. Al-Qodah, R. Abu-Zurayk, H. Waleed, and W. Omar, Fabrication of blended cellulose acetate/poly-pyrrole ultrafiltration membranes for crude oil wastewater separation. Case Stud. Chem. Environ. Eng. 9, 100692, (2024). https://doi.org/10.1016/j.cscee.2024.100692 [CrossRef] [Google Scholar]
  25. N. A. Elmaghraby, A. M. Omer, E. R. Kenawy, M. Gaber, and A. El Nemr, Fabrication of cellulose acetate/cellulose nitrate/carbon black nanofiber composite for oil spill treatment. Biomass Convers. Biorefinery, (2022). https://doi.org/10.1007/s13399-022-03506-w [Google Scholar]
  26. N. A. Elmaghraby, A. M. Omer, E. R. Kenawy, M. Gaber, S. Ragab, and A. El Nemr, Composite nanofiber formation using a mixture of cellulose acetate and activated carbon for oil spill treatment. Environ. Sci. Pollut. Res. 30, 38683 (2023). https://doi.org/10.1007/s11356-022-24982-7 [Google Scholar]
  27. D. C. N. Kung, J. Moon, H. Kang, and S. W. Kang, Enhancing CA-based separators with thermo-responsive ionic liquids: A path to eco-friendly membrane production and multifaceted applications. Carbohydr. Polym. 337, 122185 (2024). https://doi.org/10.1016/j.carbpol.2024.122185 [CrossRef] [Google Scholar]
  28. W. G. Lee, D. H. Kim, W. C. Jeon, S. K. Kwak, S. J. Kang, and S. W. Kang, Facile control of nanoporosity in Cellulose Acetate using Nickel(II) nitrate additive and water pressure treatment for highly efficient battery gel separators. Sci. Rep. 7, 1 (2017). https://doi.org/10.1038/s41598-017-01399-8 [CrossRef] [Google Scholar]
  29. S. H. Hong, Y. Cho, and S. W. Kang, Highly porous and thermally stable cellulose acetate to utilize hydrated glycerin, J. Ind. Eng. Chem., 91, 79 (2020). https://doi.org/10.1016/j.jiec.2020.07.019 [CrossRef] [Google Scholar]
  30. R. Md Salim, J. Asik, and M. S. Sarjadi, Chemical functional groups of extractives, cellulose and lignin extracted from native Leucaena leucocephala bark, Wood Sci. Technol. 55, 295 (2021). https://doi.org/10.1007/s00226-020-01258-2 [CrossRef] [Google Scholar]
  31. R. R. M. de Freitas, A. M. Senna, and V. R. Botaro, Influence of degree of substitution on thermal dynamic mechanical and physicochemical properties of cellulose acetate. Ind. Crops Prod. 109, 452 (2017) https://doi.org/10.1016/j.indcrop.2017.08.062 [Google Scholar]
  32. S. L. M. El Halal et al., Structure, morphology and functionality of acetylated and oxidised barley starches. Food Chem. 168, 247 (2015). https://doi.org/10.1016/j.foodchem.2014.07.046 [CrossRef] [PubMed] [Google Scholar]
  33. B. Ghorani, R. Kadkhodaee, G. Rajabzadeh, and N. Tucker, Assembly of odour adsorbent nanofilters by incorporating cyclodextrin molecules into electrospun cellulose acetate webs. React. Funct. Polym. 134, 121 (2019). https://doi.org/10.1016/j.reactfunctpolym.2018.11.014 [CrossRef] [Google Scholar]
  34. M. Rana, N. Singla, A. Pathak, R. Dhanya, C. Narayana, and P. Chowdhury, Vibrational-electronic properties of intra/inter molecular hydrogen bonded heterocyclic dimer: An experimental and theoretical study of pyrrole-2-carboxaldehyde. Vib. Spectrosc.89, 16 (2017). https://doi.org/10.1016/j.vibspec.2016.12.003 [Google Scholar]
  35. M. Ichwan, A. J. Onyianta, R. S. Trask, A. Etale, and S. J. Eichhorn, Production and characterization of cellulose nanocrystals of different allomorphs from oil palm empty fruit bunches for enhancing composite interlaminar fracture toughness. Carbohydr. Polym. Technol. Appl. 5, 100272 (2023). https://doi.org/10.1016/j.carpta.2022.100272 [Google Scholar]
  36. R. O. Asriza, Ropalia, D. Humaira, G. O. Ryaldi, and Zomi, Characterization of cellulose acetate functional groups synthesized from corn husk (Zea mays). IOP Conf. Ser. Earth Environ. Sci. 926 (2021) https://doi.org/10.1088/1755-1315/926/1/012060 [CrossRef] [Google Scholar]
  37. Saiful, S. Hasima, N. Kamila, and Rahmi, Cellulose acetate from palm oil bunch waste for forward osmosis membrane in desalination of brackish water, Results Eng. 15, 100611 (2022). https://doi.org/10.1016/j.rineng.2022.100611 [CrossRef] [Google Scholar]
  38. A. Ashori, M. Babaee, M. Jonoobi, and Y. Hamzeh, Solvent-free acetylation of cellulose nanofibers for improving compatibility and dispersion. Carbohydr. Polym. 102, 362 (2014). https://doi.org/10.1016/j.carbpol.2013.11.067 [Google Scholar]
  39. K. C. Khulbe and T. Matsuura, Removal of heavy metals and pollutants by membrane adsorption techniques, Appl. Water Sci. 8, 1 (2018). https://doi.org/10.1007/s13201-018-0661-6 [CrossRef] [Google Scholar]
  40. Y. Song, J. Zhang, X. Zhang, and T. Tan, The correlation between cellulose allomorphs (I and II) and conversion after removal of hemicellulose and lignin of lignocellulose. Bioresour. Technol. 193, 164 (2015). https://doi.org/10.1016/j.biortech.2015.06.084 [CrossRef] [Google Scholar]
  41. A. A. Septevani, P. K. Annamalai, and D. J. Martin, Synthesis and characterization of cellulose nanocrystals as reinforcing agent in solely palm based polyurethane foam. AIP Conf. Proc. 1904 (2017). https://doi.org/10.1063/1.5011899 [Google Scholar]
  42. O. Nechyporchuk, M. N. Belgacem, and J. Bras, Production of cellulose nanofibrils: A review of recent advances. Ind. Crops Prod. 93, 2 (2016). https://doi.org/10.1016/j.indcrop.2016.02.016 [CrossRef] [Google Scholar]
  43. J. Chen, J. Xu, K. Wang, X. Cao, and R. Sun, Cellulose acetate fibers prepared from different raw materials with rapid synthesis method. Carbohydr. Polym. 137, 685 (2016). https://doi.org/10.1016/j.carbpol.2015.11.034 [CrossRef] [Google Scholar]
  44. S. M. Gonçalves, D. C. dos Santos, J. F. G. Motta, R. R. dos Santos, D. W. H. Chávez, and N. R. de Melo, Structure and functional properties of cellulose acetate films incorporated with glycerol. Carbohydr. Polym. 209, 190 (2019). https://doi.org/10.1016/j.carbpol.2019.01.031 [CrossRef] [Google Scholar]
  45. O. Sunday Samuel and A. Mathew Adefusika, Influence of Size Classifications on the Structural and Solid-State Characterization of Cellulose Materials. Cellulose. 1 (2019). https://doi.org/10.5772/intechopen.82849 [Google Scholar]
  46. A. Y. Rahmat, I. Syahbanu, and R. Rudiyansyah, Membran Ultrafiltrasi Polisulfon/TiO2 (Psf/TiO2) Sebagai Filter Pada Pencemaran Air Oleh Bahan Bakar Solar. J. Kartika Kim. 3, 7 7 (2020). https://doi.org/10.26874/jkk.v3i1.46 [Google Scholar]
  47. S. A. El-Sayed and M. E. Mostafa, Pyrolysis characteristics and kinetic parameters determination of biomass fuel powders by differential thermal gravimetric analysis (TGA/DTG). Energy Convers. Manag. 85, 165 (2014). https://doi.org/10.1016/j.enconman.2014.05.068 [CrossRef] [Google Scholar]
  48. A. O. Oyedun, C. Z. Tee, S. Hanson, and C. W. Hui, Thermogravimetric analysis of the pyrolysis characteristics and kinetics of plastics and biomass blends. Fuel Process. Technol. 128, 471 (2014). https://doi.org/10.1016/j.fuproc.2014.08.010 [CrossRef] [Google Scholar]
  49. G. Xue et al., Water-evaporation-induced electricity with nanostructured carbon materials. Nat. Nanotechnol. 12, 317 (2017). https://doi.org/10.1038/nnano.2016.300 [CrossRef] [PubMed] [Google Scholar]
  50. D. Chen et al., Insight into biomass pyrolysis mechanism based on cellulose, hemicellulose, and lignin: Evolution of volatiles and kinetics, elucidation of reaction pathways, and characterization of gas, biochar and bio‐oil. Combust. Flame. 242 (2022). https://doi.org/10.1016/j.combustflame.2022.112142 [Google Scholar]
  51. N. Yigit and Y. S. Velioglu, Effects of processing and storage on pesticide residues in foods, Crit. Rev. Food Sci. Nutr. 60, 3622 (2020). https://doi.org/10.1080/10408398.2019.1702501 P. Zong et al., Pyrolysis behavior and product distributions of biomass six group components: Starch, cellulose, hemicellulose, lignin, protein and oil. Energy Convers. Manag. 216, 112777 (2020), https://doi.org/10.1016/j.enconman.2020.112777 [CrossRef] [PubMed] [Google Scholar]
  52. F. Aris Munandar, M. Yerizam, and F. HC, Pembuatan Selulosa Asetat dari Ampas Tebu untuk Diaplikasikan sebagai Bahan Baku Plastik Biodegradable. J. Pendidik. dan Teknol. Indones. 2, 393 (2022). https://doi.org/10.52436/1.jpti.206 [CrossRef] [Google Scholar]
  53. L. Lismeri, P. M. Zari, T. Novarani, and Y. Darni, Sintesis Selulosa Asetat dari Limbah Batang Ubi Kayu. J. Rekayasa Kim. Lingkung. 11, 82 (2016). https://doi.org/10.23955/rkl.v11i2.5407 [CrossRef] [Google Scholar]
  54. N. D. Siswati, A. N. Wachidah, and A. E. P. Ariyani, Selulosa Asetat Dari Ampas Sagu. J. Tek. Kim. 15, 2, 90 (2021). https://doi.org/10.33005/jurnal_tekkim.v15i2.2547 F. A. Souhoka and J. Latupeirissa, Synthesis and Characterization of Cellulose Acetate (CA). 5, 58 (2018) https://doi.org/10.30598//ijcr.2018.5-fen [Google Scholar]
  55. X. Zhou et al., Effect of the degree of substitution on the hydrophobicity of acetylated cellulose for production of liquid marbles. Cellulose. 23, 811 (2016). https://doi.org/10.1007/s10570-015-0856-z [CrossRef] [Google Scholar]
  56. P. Fei, L. Liao, B. Cheng, and J. Song, Quantitative analysis of cellulose acetate with a high degree of substitution by FTIR and its application. Anal. Methods. 9, 6194 (2017). https://doi.org/10.1039/c7ay02165h [CrossRef] [Google Scholar]
  57. I. Utami, A. Hasan, and R. Junaidi, Sintesis dan Karakterisasi Selulosa Asetat dari ASelulosa Fiber Cake Kelapa Sawit. J. Pendidik. dan Teknol. Indones.1, 357 (2021). https://doi.org/10.52436/1.jpti.86 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.