Open Access
Issue |
E3S Web Conf.
Volume 578, 2024
XL Siberian Thermophysical Seminar (STS-40)
|
|
---|---|---|
Article Number | 01003 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/e3sconf/202457801003 | |
Published online | 14 October 2024 |
- S. Khmel, E. Baranov, V. Vladimirov, A. Safonov, E. Chinnov, Experimental study of pool boiling on heaters with nanomodified surfaces under saturation. H. Tran. Eng. 43, 1724-1742 (2022). https://doi.org/10.1080/01457632.2021.2009211 [CrossRef] [Google Scholar]
- A.R. Betz, C.-J. Jenkins, C.-J. Kim, D. Attinger, Boiling heat transfer on superhydrophilic, superhydrophobic, and superbiphilic surfaces. Int. J. H. Mass Tran. 57, 733–741 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.080 [CrossRef] [Google Scholar]
- L. Gao, M. Bai, J. Lv, Y. Li, X. Lv, X. Liu, Y. Li, Experimental studies for the combined effects of micro-cavity and surface wettability on saturated pool boiling. Exp. Therm. Fluid S. 140, 110769 (2023). https://doi.org/10.1016/j.expthermflusci.2022.110769 [CrossRef] [Google Scholar]
- I.P. Malakhov, V.S. Serdyukov, A.I. Safonov, A.A. Rodionov, S.V. Starinskiy, A.S. Surtaev, Heat transfer enhancement and increase in critical heat flux during boiling on a biphilic silicon surface. Thermophys. Aeromech. 31, 189–192 (2024). https://doi.org/10.1134/S0869864324010190 [CrossRef] [Google Scholar]
- A.R. Motezakker, A.K. Sadaghiani, S. Çelik, T. Larsen, L.G. Villanueva, A. Koşar, Optimum ratio of hydrophobic to hydrophilic areas of biphilic surfaces in thermal fluid systems involving boiling. Int. J. H. Mass Tran. 135, 164-174 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2019.01.139 [CrossRef] [Google Scholar]
- M. Može, M. Zupančič, I. Golobič, Pattern geometry optimization on superbiphilic aluminum surfaces for enhanced pool boiling heat transfer. Int. J. H. Mass Tran. 161, 120265 (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2020.120265 [CrossRef] [Google Scholar]
- V.Serdyukov, G. Patrin, I. Malakhov, A. Surtaev, Biphilic surface to improve and stabilize pool boiling in vacuum. App. Therm. Engin. 209, 118298. (2022). https://doi.org/10.1016/j.applthermaleng.2022.118298 [CrossRef] [Google Scholar]
- E.A. Chinnov, S.Ya. Khmel, V.Yu. Vladimirov, A.I. Safonov, V.V. Semionov, K.A. Emelyanenko, A.M. Emelyanenko, L.B. Boinovich, Boiling heat transfer enhancement on biphilic surfaces. Energies. 15, 7296 (2022). https://doi.org/10.3390/en15197296 [CrossRef] [Google Scholar]
- L.B. Boinovich, K.A. Emelyanenko, A.G. Domantovsky, E.V. Chulkova, A.A. Shiryaev, A.M. Emelyanenko, Pulsed laser induced triple layer copper oxide structure for durable polyfunctionality of superhydrophobic coatings. Adv. Mat. Int. 5, 1801099 (2018). https://doi.org/10.1002/admi.201801099 [CrossRef] [Google Scholar]
- E.A. Chinnov, S.Ya. Khmel, V.Yu. Vladimirov, K.A. Emelyanenko, A.M. Emelyanenko, L.B. Boinovich, High Temp. (to be published) [Google Scholar]
- W.M. Rohsenow, A method of correlating heat transfer data for surface boiling of liquids. Trans. ASME. 74, 969-975 (1952). https://doi.org/10.1115/1.4015984 [Google Scholar]
- I.L. Pioro, Experimental evaluation of constants for the Rohsenow pool boiling correlation. Int. J. H. Mass Tran. 42, 2003-2013 (1999). https://doi.org/10.1016/S0017-9310(98)00294-4 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.