Open Access
Issue |
E3S Web Conf.
Volume 578, 2024
XL Siberian Thermophysical Seminar (STS-40)
|
|
---|---|---|
Article Number | 01004 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.1051/e3sconf/202457801004 | |
Published online | 14 October 2024 |
- B.M. Smirnov, Metal nanostructures: from clusters to nanocatalysis and sensors. Phys.- Usp. 60, 1236–1267 (2017). https://doi.org/10.3367/UFNr.2017.02.038073 [CrossRef] [Google Scholar]
- O.F. Hagena, Nucleation and growth of clusters in expanding nozzle flows. Surf. Science. 106, 101–116 (1981). https://doi.org/10.1016/0039-6028(81)90187-4 [CrossRef] [Google Scholar]
- F.E. Kruis, H. Fissan, A. Peled, Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications—a review. J. Aerosol Sci. 29, 511–535 (1998). https://doi.org/10.1016/S0021-8502(97)10032-5 [CrossRef] [Google Scholar]
- K. Wegner, P. Piseri, H.V. Tafreshi, P. Milani, Cluster beam deposition: a tool for nanoscale science and technology. J. Phys. D: Appl. Phys. 39, R439 (2006). [CrossRef] [Google Scholar]
- J. Khoury, S.R. Kirkpatrick, M. Maxwell, R.E. Cherian, A. Kirkpatrick, R.C. Svrluga, Neutral atom beam technique enhances bioactivity of PEEK. Nuc. Instrum. Meth. Phys. Res. B. 307, 630–634 (2013). https://doi.org/10.1016/j.nimb.2012.11.087 [CrossRef] [Google Scholar]
- I. Yamada, J. Matsuo, N. Toyoda, T. Aoki, T. Seki, Progress and applications of cluster ion beam technology. Current Opinion in Solid State and Mat. Sci. 19, 12 (2015). https://doi.org/10.1016/j.cossms.2014.11.002 [CrossRef] [Google Scholar]
- N. Toyoda, A. Ogawa, Atomic layer etching of Cu film using gas cluster ion beam. J. Phys. D: Appl. Phys. 50, 184003 (2017). http://dx.doi.org/10.1088/1361-6463/aa6527 [CrossRef] [Google Scholar]
- A.V. Bulgakov, N.Y. Bykov, A. I. Safonov, Y. G. Shukhov, S. V. Starinskiy, Silver Vapor Supersonic Jets: Expansion Dynamics, Cluster Formation, and Film Deposition. Materials. 16, 4876 (2023). https://doi.org/10.3390/ma16134876 [CrossRef] [PubMed] [Google Scholar]
- F.F. Abraham, Homogeneous Nucleation Theory (Academic Press, New York, 1974) [Google Scholar]
- T.E. Itina, M. Sentis, W. Marine, Synthesis of nanoclusters by nanosecond laser ablation: Direct simulation Monte Carlo modelling. Appl. Surf. Sci. 252, 4433–4038 (2006). https://doi.org/10.1016/j.apsusc.2005.07.106 [Google Scholar]
- Z. Li, J. Zhong, D.A. Levin, B. J. Garrison, Kinetic nucleation model for free expanding water condensation plume simulations. J. Chem. Phys. 130, 174309 (2009). https://doi.org/10.1063/1.3129804 [CrossRef] [PubMed] [Google Scholar]
- R. Jansen, I. Wysong, S. Gimelshein, M. Zeifman, U. Buck, Nonequilibrium numerical model of homogeneous condensation in argon and water vapor expansions. J. Chem. Phys. 132, 244105 (2010). https://doi.org/10.1063/1.3447379 [CrossRef] [PubMed] [Google Scholar]
- N.Y. Bykov, Yu.E. Gorbachev, Cluster formation in copper vapor jet expanding into vacuum: the direct simulation Monte Carlo. Vacuum. 163, 119 (2019) https://doi.org/10.1016/j.vacuum.2019.02.007 [CrossRef] [Google Scholar]
- N.Yu. Bykov, S.A. Fyodorov, Yu. E. Gorbachev, Small cluster formation in a free argon jet. Phys. of Fluids. 36, 087134 (2024). https://doi.org/10.1063/5.0222569 [CrossRef] [Google Scholar]
- V.F. Gordiets, L.A. Shelepin, Y.S. Shmotkin, Kinetics of isothermal homogeneous-condensation processes. J Russ Laser Res. 7, 588–616 (1986). https://doi.org/10.1007/BF01120403 [CrossRef] [Google Scholar]
- B.E. Wyslouzil, W. Judith, Overview: Homogeneous nucleation from the vapor phase—The experimental science. J. Chem. Phys. 145, 211702 (2016). https://doi.org/10.1063/1.4962283 [CrossRef] [PubMed] [Google Scholar]
- A.E. Zarvin, R.G. Sharafutdinov, Formation of supersonic molecular beams by means of a skimmer. J. Appl. Mech. Tech. Phys. 20, 744–749 (1979). https://doi.org/10.1007/BF00908668 [Google Scholar]
- T.A. Milne, F.T. Greene, Mass spectrometric observations of argon clusters in nozzle beams. I. General behavior and equilibrium dimer concentrations. J. Chem. Phys. 47, 4095–4101 (1967). https://doi.org/10.1063/1.1701582 [Google Scholar]
- D. Golomb, R.E. Good, A.B. Bailey,M.R. Busby, R. Dawbarn, Dimers, clusters, and condensation in free jets. II. J. Chem. Phys. 57, 3844–3852 (1972). https://doi.org/10.1063/1.1678854 [CrossRef] [Google Scholar]
- A.E. Zarvin et al., Condensable supersonic jet facility for analyses of transient low-temperature gas kinetics and plasma chemistry of hydrocarbons. IEEE Transactions on Plasma Science. 45, 819–827 (2017). https://doi.org/10.1109/TPS.2017.2682901 [CrossRef] [Google Scholar]
- V.G. Dulov, and G.A. Lukyanov, Gas dynamics of outflow processes. (Nauka, Novosibirsk, 1984.) [Google Scholar]
- G.A. Bird, Molecular, Gas Dynamics and the Direct Simulation of Gas Flows. (Clarendon Press, Oxford, 1994). [CrossRef] [Google Scholar]
- G.A. Bird, The DSMC Method.(CreateSpace Independent Publishing Platform, 2013). [Google Scholar]
- N.Y. Bykov, Yu.E. Gorbachev, Mathematical models of water nucleation process for the Direct Simulation Monte Carlo method. Appl. Math. Comput. 296, 215–232 (2017). https://doi.org/10.1016/j.amc.2016.10.004 [Google Scholar]
- D.E. Stogryn, J.O. Hirschfelder, Contribution of bound, metastable, and free molecules to the second virial coefficient and some properties of double molecules. J. Chem. Phys. 31, 1531 (1959). https://doi.org/10.1063/1.1730649 [CrossRef] [Google Scholar]
- A.V. Malakhovskii, M. Ben-Zion, Temporal evolution of an argon cluster during the process of its evaporation. Chem. Phys. 264, 135–143 (2001). https://doi.org/10.1016/S0301-0104(00)00392-X [CrossRef] [Google Scholar]
- L.L. Lohr, Rotational energy dispersions for argon clusters. Mol. Phys. 85, 607 –617 (1995). https://doi.org/10.1080/00268979500101331 [CrossRef] [Google Scholar]
- D.I. Zhukhovitskii, Size‐corrected theory of homogeneous nucleation. J. Chem. Phys. 101, 5076 –5080 (1994). https://doi.org/10.1063/1.467364 [CrossRef] [Google Scholar]
- V.G. Fastovskiy, A.E. Rovinskiy, Yu.V. Petrovskiy, Inert gases. (Atomizdat, Moscow, 1972). [Google Scholar]
- I.S. Grigor’ev, E.Z. Mejlihov, Physical quantities: reference book. (Energoatomizdat, Moscow, 1991). [Google Scholar]
- N.Y. Bykov, V.V. Zakharov, Rarefied gas mixtures with large species mass ratio: Outflow into vacuum. Phys. of Fluids. 34, 057106 (2022). https://doi.org/10.1063/5.0089628 [CrossRef] [Google Scholar]
- Zefirov N.S., Chemical Encyclopaedia. (Scientific Publ. House Great Russian Encyclopedia, Moscow, 4, 1995) [Google Scholar]
- N.Y. Bykov, Yu.E. Gorbachev, S.A. Fyodorov, Rarefied flow regime of an underexpanded supersonic jet. E3S Web of Conferences. 459, 01001 (2023). https://doi.org/10.1051/e3sconf/202345901001 [CrossRef] [EDP Sciences] [Google Scholar]
- H. Ashkenas, F.S. Sherman, Rarefied Gas Dynamics, Volume 2. Proceedings of the Fourth International Symposium held at the Institute for Aerospace Studies, Toronto, 1964. ( Academic Press, New York, 1965). [Google Scholar]
- O.F. Hagena, Condensation in free jets: Comparison of rare gases and metals. Z Phys D - Atoms, Molecules and Clusters. 4, 291–299 (1987). https://doi.org/10.1007/BF01436638 [CrossRef] [Google Scholar]
- D. Bonhommeau, N. Halberstadt, A. Viel, Fragmentation dynamics of argon clusters (Arn, n= 2 to 11) following electron-impact ionization: Modeling and comparison with experiment. J. Chem. Phys. 124, 184314 (2006). https://doi.org/10.1063/1.2194552 [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.