Open Access
Issue
E3S Web Conf.
Volume 578, 2024
XL Siberian Thermophysical Seminar (STS-40)
Article Number 01032
Number of page(s) 6
DOI https://doi.org/10.1051/e3sconf/202457801032
Published online 14 October 2024
  1. K.Y. Leong, N.M. Fadhillahanafi, S.P. Chew, Viscosity characteristic of carbon nanotube based nanofluids at room temperature. ARPN J. Eng. Appl. Sci. 11(10), 6584–6588 (2016). [Google Scholar]
  2. A.N. Omrani, E. Esmaeilzadeh, M. Jafari, A. Behzadmehr, Effects of multi walled carbon nanotubes shape and size on thermal conductivity and viscosity of nanofluids. Diamond & Related Materials. 93, 96–104 (2019). https://doi.org/10.1016/j.diamond.2019.02.002. [CrossRef] [Google Scholar]
  3. A.K. Patra, M.K. Nayak, A. Misra, Viscosity of nanofluids-A Review. Int. J. Therm. Sci. Tech. 7(2), 070202 (2020). https://doi.org/10.36963/IJTST.2020070202. [Google Scholar]
  4. V.Ya. Rudyak, D.S. Tret′yakov, Rheological properties of water- and ethylene-glycol- based nanofluids with single-walled carbon nanotubes. J. Eng. Phys. Thermophys. 94(5), 1208–1216 (2021). [CrossRef] [Google Scholar]
  5. V. Rudyak, A. Minakov, M. Pryazhnikov, Preparation, characterization, and viscosity studding the single-walled carbon nanotube nanofluids. J. Mol. Liquids, 329(1),115517 (2021). https://doi.org/10.1016/j.molliq.2021.115517. [CrossRef] [Google Scholar]
  6. S. Hamze, N. Berrada, A. Desforges, B. Vigolo, Stable dispersions of double-walled carbon nanotubes for carbon nanotube/copper co-deposition. J. Gleize, J. Ghanbaja, T. Maré, D. Cabaleiro, P. Estellé, Heat Transfer Eng. 42(19-20), 1–13 (2021). https://doi.org/10.1016/j.matchemphys.2023.127491. [Google Scholar]
  7. V.Ya. Rudyak, G.R. Dashapilov, A.V. Minakov, M.I. Pryazhnikov, Comparative characteristics of viscosity and rheology of nanofluids with multi-walled and single- walled carbon nanotubes. Diamond and Related Materials,132, 109616 (2023). https://doi.org/10.1016/j.diamond.2022.109616. [CrossRef] [Google Scholar]
  8. V.Ya. Rudyak, A.A. Belkin, T.A. Rafalskaya, Molecular dynamics modeling rheology of nanofluids. Technical Phys. Lett. 49(10), 1–4 (2023). [Google Scholar]
  9. V.Ya.Rudyak, A.A.Belkin, T.A. Rafalskaya. Molecular dynamics study of the rheology of benzene-based nanofluids with metal particles. J. Mol. Liquids, 403, 124805 (2024). https://doi.org/10.1016/j.molliq.2024.124805. [CrossRef] [Google Scholar]
  10. A.P. Thompson, et al., LAMMPS ─ a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comp. Phys. Comm. 271, 108171 (2022). https://doi.org/10.1016/j.cpc.2021.108171. [CrossRef] [Google Scholar]
  11. I. Volkov, I.M. Zharsky, Great Chemical Reference (Modern School Publishing, Minsk, 2005). [Google Scholar]
  12. S.J. Stuart, A.B. Tutein, J.A. Harrison, A reactive potential for hydrocarbons with intermolecular interactions. Journ. of Chem. Phys., 112(14), 6472-6486 (2000). [CrossRef] [Google Scholar]
  13. V.Ya. Rudyak, S.L. Krasnolutskii, E.V. Lezhnev, Nanosystems, Molecular dynamics study of nanofluids viscosity with carbon tubes. Phys. Chem. Math., 15 (1), 37–45 (2024). [Google Scholar]
  14. G.K. Batchelor, The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J. Fluid Mech. 83, 97–117 (1977). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.