Open Access
Issue
E3S Web Conf.
Volume 578, 2024
XL Siberian Thermophysical Seminar (STS-40)
Article Number 01038
Number of page(s) 16
DOI https://doi.org/10.1051/e3sconf/202457801038
Published online 14 October 2024
  1. D.B. Goldstein, T-C. Tuan, Secondary flow induced by riblets. J. Fluid Mechanics. 363, 115–151 (1998.). [CrossRef] [Google Scholar]
  2. A.V. Boiko, A.V. Dovgal, G.R. Grek, V.V. Kozlov, Physics of transitional shear flows (Berlin: Springer, 2011) [Google Scholar]
  3. I.J. Sobey, On flow through furrowed channels. Part I. Calculated flow patterns. J. Fluid Mech. 96, 1–26 (1980). [CrossRef] [Google Scholar]
  4. K.D. Stepanoff, I.J. Sobey, B.J. Bellhouse, On flow through furrowed channels. Part II. Observed flow patterns. J. Fluid Mech. 96, 27–32 (1980). [CrossRef] [Google Scholar]
  5. E.M. Sparrow, L.M. Hossfeld, Effect of rounding of protruding edges on heat transfer and pressure drop in a duct. Int. J. Heat Mass Transfer. 27, 1715-1723 (1984). [CrossRef] [Google Scholar]
  6. D.J. Beebe, G.A. Mensing, G.M. Walker, Physics and applications of microfluidics in biology. Annual Review of Biomedical Engineering. 4, 261–286 (2002). [CrossRef] [PubMed] [Google Scholar]
  7. A.V. Boiko, N.V. Klyushnev, Yu.M. Nechepurenko, Stability of shear flows over a grooved surface (Moscow: Institute of applied mathematics by M.V. Keldysh. 2016). [CrossRef] [Google Scholar]
  8. O.A. Grigoryev, N.V. Klyushnev, Stability of the Poiseuille flow in a channel with the comb fins. Journal of Computational Mathematics and Mathematical Physics. 58, 595–606 (2018). [Google Scholar]
  9. S.F. Kistle, P.M. Schweizer, Liquid Film Coating (Chapman and Hall. New York, 1997). [CrossRef] [Google Scholar]
  10. S.J.Weinstein, K.J. Ruschak, Coating flows. Annu. Rev. Fluid Mech. 36, 29–53 (2004). [CrossRef] [Google Scholar]
  11. J.M., DeSantos, Melli, T.R., Scriven, L.E., Mechanics of gas-liquid flow in packed-bed contactors. Annu. Rev. Fluid Mech. 23, 233–260 (1991). [CrossRef] [Google Scholar]
  12. Y.Y. Trifonov, Modeling of mixture separation in column with structured packing. Multiphase Science and Technology. 34, 23-51 (2022). [CrossRef] [Google Scholar]
  13. Y.S. Kachanov, Physical mechanisms of laminar-boundary-layer transition. Annu. Rev. Fluid Mech. 26, 411-482 (1994). [CrossRef] [Google Scholar]
  14. T. Nishimura, Y. Ohori, Y. Kawamura, Flow characteristics in a channel with symmetric wavy wall for steady flow. J. Chem. Eng. Jpn. 17, 466–471 (1984). [CrossRef] [Google Scholar]
  15. T. Nishimura, Y. Ohori, Y. Kajimoto, Y. Kawamura, Mass transfer characteristics in a channel with symmetric wavy wall for steady flow. J. Chem. Eng. Jpn. 18, 550–555 (1985). [CrossRef] [Google Scholar]
  16. T. Nishimura, Y. Kajimoto, Y. Kawamura, Mass transfer enhancement in channels with a wavy wall. J. Chem.Eng. Japan. 19, 142–144 (1986). [Google Scholar]
  17. A.M. Guzman, C. H. Amon, Transition to chaos in converging-diverging channel flows: Ruelle-Takens-Newhouse scenario. Phys. Fluids. 6, 1994–2002 (1994). [CrossRef] [Google Scholar]
  18. A.M. Guzman, C.H. Amon, Dynamical flow characterization of transitional and chaotic regimes in converging- diverging channels. J. Fluid Mech. 321, 25–57 (1996). [CrossRef] [Google Scholar]
  19. C. H. Amon, A.M. Guzman, B. Morel, Lagrangian chaos, Eulerian chaos, and mixing enhancement in converging diverging channel flows. Phys. Fluids. 8, 1192-1206 (1996). [CrossRef] [Google Scholar]
  20. K.J. Cho, M.-U. Kim, H.D. Shin, Linear stability of two-dimensional steady flow in wavy-walled channels. Fluid Dyn. Res. 23, 349–370 (1998). [CrossRef] [Google Scholar]
  21. Cabal, A., Szumbarski, J., Floryan, J.M., Stability of flow in a wavy channel. Journal of Fluid Mechanics. 457, 191–212 (2002). [CrossRef] [Google Scholar]
  22. J.M. Floryan, C. Floryan, Traveling wave instability in a diverging converging channel. Fluid Dyn. Res. 42, 025509 (2010). [CrossRef] [Google Scholar]
  23. J. Szumbarski, Instability of viscous incompressible flow in a channel with transversely corrugated walls. Journal of Theoretical and Applied Mechanics. 45, 659-683 (2007). [Google Scholar]
  24. N. Yadav, S.W., Gepner, J. Szumbarski, Instability in a channel with grooves parallel to the flow. Physics of Fluids. 29, 084104. (2017). [CrossRef] [Google Scholar]
  25. P. Hall, An instability mechanism for channel flows in the presence of wall rourgness. J. Fluid Mech. 899:R2. doi:10.1017/jfm.2020-493 (2020). [CrossRef] [Google Scholar]
  26. P. Hall, Long wavelength streamwise vortices caused by wall curvature or roughness. J. Eng. Math. 128:2. https://doi.org/10.1007/s10665-021-10112-8. (2021). [CrossRef] [Google Scholar]
  27. Y.Y. Trifonov, Stability of a viscous liquid film flowing down a periodic surface. Int. J. Multiphase Flow. 33, 1186-1204 (2007). [CrossRef] [Google Scholar]
  28. Y.Y. Trifonov, Counter-current gas-liquid wavy film flow between the vertical plates analyzed using the Navier-Stokes equations. AIChE J.. 56, 1975-1987 (2010). [CrossRef] [Google Scholar]
  29. S.A. Orszag, Accurate solution of the Orr-Sommerfeld Stability Equation. J. Fluid Mech. 50, 689-703 (1971). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.