Open Access
Issue
E3S Web Conf.
Volume 578, 2024
XL Siberian Thermophysical Seminar (STS-40)
Article Number 01039
Number of page(s) 11
DOI https://doi.org/10.1051/e3sconf/202457801039
Published online 14 October 2024
  1. Starikovskiy A, Aleksandrov N. Plasma-assisted ignition and combustion. Progress in Energy and Combustion Science. 39, 61-110 (2013) [CrossRef] [Google Scholar]
  2. Jianfeng Fang, Xiaomin Wu, Hao Duan, Chao Li and Zhongquan Gao Effects of electric fields on the combustion characteristics of lean burn methane-air mixtures. Energies. 8, 2587-2605 (2015) [CrossRef] [Google Scholar]
  3. Chien Y.-C., Escofet-Martin D., Dunn-Rankin D. Ion current and carbon monoxide release from an impinging me-thane/air coflow flame in an electric field. Combustion and Flame. 204, 250-259 (2019) [CrossRef] [Google Scholar]
  4. Colcote H.F. Mechanism of the formation of ions of flames. Combustion & Flame. 1, 385–403 (1957) [CrossRef] [Google Scholar]
  5. Gooding J. M., Bohme D. K. and Chung-Wai Ng. Detailed ion chemistry in methane- oxygen flames. I. Positive ions. Combustion & Flame. 36, 27–43 (1979) [CrossRef] [Google Scholar]
  6. Gooding J. M., Bohme D. K. and Chung-Wai Ng. Detailed ion chemistry in methane- oxygen flames. II. Negative ions. Combustion & Flame. 36, 45–62 (1979) [CrossRef] [Google Scholar]
  7. T. Pedersen, R.S. Brown Simulation electric field effect in premixed methane flame. Combustion & Flame. 94, 433–448 (1993) [CrossRef] [Google Scholar]
  8. J M Rodrigues, A Agneray, X Jaffr´ezic, M Bellenoue, S Labuda, C Leys, A P Chernukho, A N Migoun, A Cenian, A M Savel’ev, N S Titova, A M Starik Evolution of charged species in propane/air flames: mass-spectrometric analysis and modelling. Plasma sources science and technology. 16, 161–172 (2007) [CrossRef] [Google Scholar]
  9. G.H. Markstein Interaction of flame propagation and flow disturbances. Third Symposium on Combustion and Flame and Explosion Phenomena. 3, 162-167 (1948) [CrossRef] [Google Scholar]
  10. A.B. Vatazhin, V.A. Lichter, V.A. Sepp, V.I. Shulgin The effect of an electric field on the emission of nitrogen oxides and the structure of a diffusion laminar propane flame. Fluid Dynamics. 31, 13–23 (1995) [Google Scholar]
  11. D. G. Park, S. H. Chung, M. S. Cha Visualization of ionic wind in laminar jet flames. Combustion and Flame. 184, 246–248 (2017) [CrossRef] [Google Scholar]
  12. M. Belhi, B. J. Lee, M. S. Cha, H. G. Im Three-dimensional simulation of ionic wind in a laminar premixed Bunsen flame subjected to a transverse DC electric field. Combustion and Flame. 202, 90–106 (2019) [CrossRef] [Google Scholar]
  13. Y. Tang, M. S. Simeni, Q. Yao, I. V. Adamovich Non-premixed counterflow methane flames in DC/AC/NS electric fields. Combustion and Flame. 240, 112051 (2022) [CrossRef] [Google Scholar]
  14. Y. Li, J. Wang, H. Xia, R. Ju, J. Yu, H. Mu, Z. Huang Effect of DC Electric Field on Turbulent Flame Structure and Turbulent Burning Velocity. Combustion Science and Technology. 195, 692-712 (2023) [CrossRef] [Google Scholar]
  15. Chen B, Wang H, Wang Z, Han J, Alquaity ABS et al. Ion chemistry in premixed rich methane flames. Combustion and Flame. 202, 208–218 (2019) [CrossRef] [Google Scholar]
  16. S.H. Yoon, B. Seo, J. Park, S.H. Chung, M.S. Cha, Edge flame propagation via parallel electric fields in nonpremixed coflow jets. Proceedings of the Combustion Institute. 37, 5537-5544 (2019) [CrossRef] [Google Scholar]
  17. Altendorfner, J. Kuhl, L. Zigan, A. Leipertz Study of the influence of electric fields on flames using planar LIF and PIV techniques. Proceedings of the Combustion Institute. 33, 3195-3201. (2011) [CrossRef] [Google Scholar]
  18. Tupikin A.V., Zamashchikov V.V. Stretching of a laminar flame in a weak electric fieldю Combustion, Explosion and Shock wave. 56, 125–130 (2020) [CrossRef] [Google Scholar]
  19. H.C Jaggers, A. von Angel The effect of electric field on the burning velocity verious flames. Combustion & Flame. 16, 275–285 (1971) [CrossRef] [Google Scholar]
  20. Zhao S., Liu B., Zhao B., Li T., Shu Q. Numerical Simulation of Ethanol Air Diffusion Flame Quenching under Transverse AC Electric Field. Fire. 5, 196 (2022) [CrossRef] [Google Scholar]
  21. X. Z. Jiang, K. H. Luo Reactive and electron force field molecular dynamics simulations of electric field assisted ethanol oxidation reactions. Proceedings of the Combustion Institute. 38, 6605-6613 (2021) [CrossRef] [Google Scholar]
  22. Markstein G.H. Nonsteady flame propagation, (Pergamon Press, Oxford, London, U.K., 1964) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.