Open Access
Issue
E3S Web Conf.
Volume 481, 2024
International Conference on Sustainable Chemistry (ICSChem 2023)
Article Number 01001
Number of page(s) 10
Section Energy
DOI https://doi.org/10.1051/e3sconf/202448101001
Published online 26 January 2024
  1. Ł. Szkudlarek, K. Chałupka, W. Maniukiewicz, and M. I. Szynkowska-j, Catalysts 11, (2021) [Google Scholar]
  2. N. Supamathanon and S. Khabuanchalad, Mater. Today Proc. 17, 1412 (2019) [CrossRef] [Google Scholar]
  3. A. Santoso, Sumari, D. Sukarianingsih, and R. M. Sari, J. Phys. Conf. Ser. 1093, (2018) [Google Scholar]
  4. H. Wu, J. Zhang, Q. Wei, J. Zheng, and J. Zhang, Fuel Process. Technol. 109, 13 (2013) [CrossRef] [Google Scholar]
  5. E. Dahdah, J. Estepane, and S. Sammoury, Willey Online Libr. 46, 694 (2021) [Google Scholar]
  6. I. Lawan, Z. N. Garba, W. Zhou, M. Zhang, and Z. Yuan, Renew. Energy 145, 2550 (2020) [CrossRef] [Google Scholar]
  7. Taslim, Meilia, and Nike Taruna, J. Tek. Kim. USU 5, 15 (2017) [CrossRef] [Google Scholar]
  8. S. Pathak, 7, 1780 (2015) [Google Scholar]
  9. R. Avhad and J. M. Marchetti, Renew. Sustain. Energy Rev. 50, 696 (2015) [CrossRef] [Google Scholar]
  10. A. L. De Lima, C. M. Ronconi, and C. J. A. Mota, Catal. Sci. Technol. (2016) [Google Scholar]
  11. I. M. R. Fattah, H. C. Ong, T. M. I. Mahlia, M. Mofijur, and A. S. Silitonga, Front. Energy Res. 8, 1 (2020) [CrossRef] [Google Scholar]
  12. A. K. Dalai, T. Issariyakul, and C. Baroi, (2012) [Google Scholar]
  13. L. Lv, L. Dai, W. Du, and D. Liu, MDPI (2021) [Google Scholar]
  14. H. Li, F. Liu, Y. Helian, G. Yang, Z. Wu, Y. Gao, M. Guo, P. Cui, D. Wang, and M. Yu, Catal. Today 0 (2020) [Google Scholar]
  15. R. Ghanbari, Z. Fard, D. Jafari, and M. Palizian, React. Kinet. Mech. Catal. (2019) [Google Scholar]
  16. S. Qu, C. Chen, M. Guo, J. Lu, W. Yi, J. Ding, and Z. Miao, J. Clean. Prod. 276, 123382 (2020) [CrossRef] [Google Scholar]
  17. A. Tangy, V. B. Kumar, I. N. Pulidindi, Y. Kinel-Tahan, Y. Yehoshua, and A. Gedanken, Energy & Fuels 30, 10602 (2016) [CrossRef] [Google Scholar]
  18. K. D. Pandiangan, W. Simanjuntak, S. Hadi, I. Ilim, D. I. Alista, and D. A. Sinaga, Trends Sci. 20, 6480 (2023) [CrossRef] [Google Scholar]
  19. V. Winoto and N. Yoswathana, Energies 12, (2019) [Google Scholar]
  20. W. Roschat, S. Phewphong, J. Khunchalee, and P. Moonsin, Mater. Today Proc. 5, 13916 (2018) [CrossRef] [Google Scholar]
  21. G. Chavez-esquivel, A. Su, C. E. Santolalla-vargas, O. Abel, O. Uriel, A. Talavera-l, and J. A. Rodriguez, Energies 14, 1 (2021) [Google Scholar]
  22. O. Dominic, E. Joseph, U. Callistus, and N. Kenechi, Clean. Chem. Eng. 3, 100038 (2022) [CrossRef] [Google Scholar]
  23. G. Busca, Microporous Mesoporous Mater. 254, 3 (2017) [CrossRef] [Google Scholar]
  24. L. Du, S. Ding, Z. Li, E. Lv, J. Lu, and J. Ding, Energy Convers. Manag. 173, 728 (2018) [CrossRef] [Google Scholar]
  25. Z. Li, S. Ding, C. Chen, S. Qu, L. Du, J. Lu, and J. Ding, Energy Convers. Manag. 192, 335 (2019) [CrossRef] [Google Scholar]
  26. N. Fitriana, H. Husin, D. Yanti, K. Pontas, P. N. Alam, M. Ridho, and I. Iskandar, IOP Conf. Ser. Mater. Sci. Eng. 334, (2018) [Google Scholar]
  27. P. Mierczynski, L. Szkudlarek, K. Chalupka, W. Maniukiewicz, S. K. Wahono, K. Vasilev, and M. I. Szynkowska-jozwik, Materials (Basel). 14, (2021) [Google Scholar]
  28. W. Chen, X. Yi, L. Huang, W. Liu, G. Li, D. Acharya, X. Sun, and A. Zheng, Catal. Sci. Technol. 9, 5045 (2019) [CrossRef] [Google Scholar]
  29. B. Salamatinia, I. Hashemizade, and A. A. Zuhairi, Iran J. Chem. Chem. Eng. 32, 113 (2013) [Google Scholar]
  30. H. Mootabadi, B. Salamatinia, S. Bhatia, and A. Z. Abdullah, Fuel 89, 1818 (2010) [CrossRef] [Google Scholar]
  31. R. D. Kusumaningtyas, M. Yasir, and A. Utomo, AIP Conf. Proc. 030174, 2 (2020) [Google Scholar]
  32. M. Minaria and R. Mohadi, Sci. Technol. Indones. 1, 1 (2016) [CrossRef] [Google Scholar]
  33. Rakhmad, N. Hindryawati, and Daniel, Pros. Semin. Nas. Kim. 101 (2017) [Google Scholar]
  34. T. Maneerung, S. Kawi, Y. Dai, and C. Wang, Energy Convers. Manag. 123, 487 (2016) [CrossRef] [Google Scholar]
  35. S. L. Lee, Y. C. Wong, Y. P. Tan, and S. Y. Yew, Energy Convers. Manag. 93, 282 (2015) [CrossRef] [Google Scholar]
  36. T. Anbessie, T. T. Mamo, and Y. S. Mekonnen, Sci. Rep. 9, 1 (2019) [Google Scholar]
  37. E. Martinez-guerra and V. G. Gude, Energy Convers. Manag. 88, 633 (2014) [CrossRef] [Google Scholar]
  38. A. M. Rabie, M. Shaban, M. R. Abukhadra, R. Hosny, S. A. Ahmed, and N. A. Negm, J. Mol. Liq. 279, 224 (2019) [CrossRef] [Google Scholar]
  39. S. Yan, H. Lu, and B. Liang, Energy and Fuels 22, 646 (2008) [CrossRef] [Google Scholar]
  40. P. Eduardo, S. Valencia, and F. Rey, Chem. Rev. (2022) [Google Scholar]
  41. V. Verdoliva, M. Saviano, and S. De Luca, Catalysts 9, (2019) [Google Scholar]
  42. G. Busca, Zeolites and Other Structurally Microporous Solids as Acid–Base Materials (2014) [Google Scholar]
  43. H. Hattori, Chem. Rev. 95, (1995) [Google Scholar]
  44. S. M. Pavlović, D. M. Marinković, M. D. Kostić, and I. M. Janković-častvan, Fuel 267, 117171 (2020) [CrossRef] [Google Scholar]
  45. M. H. Firouzjaee and M. Taghizadeh, Chem. Eng. Technol. 40, 1140 (2017) [CrossRef] [Google Scholar]
  46. G. Yang and J. Yu, Chemistry (Easton). 5, 438 (2023) [Google Scholar]
  47. J. Mandela, W. Trisunaryanti, M. Koketsu, and D. A. Fatmawati, Indones. J. Chem. 21, 787 (2021) [Google Scholar]
  48. A. W. Chester and E. G. Deruoane, Zeolite Characterization and Catalysis: A Tutorial (Elsevier, 2009) [CrossRef] [Google Scholar]
  49. S. Li, Y. Lin, and Y.-P. Li, Catalyst (2021) [Google Scholar]
  50. B. K. Singh, Y. Kim, S. Kwon, and K. Na, Catalysts 11, (2021) [Google Scholar]
  51. A. P. Purnamasari, M. E. F. Sari, D. T. Kusumaningtyas, S. Suprapto, A. Hamid, and D. Prasetyoko, Bull. Chem. React. Eng. & Catal. 12, 329 (2017) [CrossRef] [Google Scholar]
  52. S. L. Martínez, R. Romero, A. Romero, S. Víctor, and R. Natividad, Ind. Eng. Chem. Res. 50, 2665 (2011) [CrossRef] [Google Scholar]
  53. N. Saadiah and L. Norzita, Appl. Nanosci. 12, 3755 (2022) [CrossRef] [Google Scholar]
  54. D. Anwaristiawan and N. Widiarti, Indones. J. Chem. Sci. 7, 292 (2018) [Google Scholar]
  55. S. Sumari, M. Murti, A. Santoso, and M. R. Asrori, J. Renew. Mater. 10, (2022) [Google Scholar]
  56. R. J. Davis, J. Catal. 216, 396 (2003) [CrossRef] [Google Scholar]
  57. R. Ropp, in Encycl. Alkaline Earth Compd. (Elsevier B.V., 2013), pp. 105–197 [CrossRef] [Google Scholar]
  58. S. M. Pavlović, D. M. Marinković, M. D. Kostić, I. M. Janković-Častvan, L. V. Mojović, M. V. Stanković, and V. B. Veljković, Fuel 267, 117171 (2020) [CrossRef] [Google Scholar]
  59. A. S. Yusuff, A. K. Bhonsle, D. P. Bangwal, and N. Atray, Renew. Energy 177, 1253 (2021) [CrossRef] [Google Scholar]
  60. L. B. Sun, X. Q. Liu, and H. C. Zhou, Chem. Soc. Rev. 44, 5092 (2015) [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.