Open Access
Issue |
E3S Web Conf.
Volume 481, 2024
International Conference on Sustainable Chemistry (ICSChem 2023)
|
|
---|---|---|
Article Number | 06010 | |
Number of page(s) | 17 | |
Section | Renewable Resource | |
DOI | https://doi.org/10.1051/e3sconf/202448106010 | |
Published online | 26 January 2024 |
- “Protease Market Size, Share, Growth | Forecast Report – 2030,” Allied Market Research. https://www.alliedmarketresearch.com/protease-market-A12830 (accessed Jun. 06, 2023). [Google Scholar]
- A. Razzaq et al., “Microbial Proteases Applications,” Front. Bioeng. Biotechnol., vol. 7, p. 110, Jun. (2019), doi: 10.3389/fbioe.2019.00110. [CrossRef] [Google Scholar]
- P. Singhal, V. Nigam, and A. Vidyarthi, “Studies on production, characterization and applications of microbial alkaline proteases,” Int. J. Adv. Biotechnol. Res., vol. 3, pp. 653-669, 2012. [Google Scholar]
- N. Faridah, “EKSPLORASI DAN KARAKTERISASI BAKTERI HALOFILIK PENGHASIL PROTEASE EKSTRASELULER DARI LUMPUR BLEDUG KUWU JAWA TENGAH DAN AIR TAMBAK GARAM PASURUAN SERTA POTENSINYA SEBAGAI PENGHASIL KERATINASE,” (2021). [Google Scholar]
- S. B. N. Krishna and L. D. Kodidhela, “Optimization of thermostable alkaline protease production from species of Bacillus using rice bran,” Afr. J. Biotechnol., vol. 4, no. 7, pp. 724–726, Jul. (2005), doi: 10.5897/AJB2005.000-3132. [CrossRef] [Google Scholar]
- N. Faridah and S. Suharti, “Characterization of extracellular protease from halophilic microbes isolated from Bledug Kuwu, Grobogan, Central Java,” presented at the INTERNATIONAL CONFERENCE ON LIFE SCIENCES AND TECHNOLOGY (ICoLiST 2020), Malang, Indonesia, (2021), p. 030122. doi: 10.1063/5.0052644. [Google Scholar]
- M. L. Shuler and F. Kargi, Bioprocess engineering: basic concepts, 2nd ed. in Prentice Hall international series in the physical and chemical engineering sciences. Upper Saddle River, NJ: Prentice Hall, (2002). [Google Scholar]
- Y. Zhou et al., “Effects of Agitation, Aeration and Temperature on Production of a Novel Glycoprotein GP-1 by Streptomyces kanasenisi ZX01 and Scale-Up Based on Volumetric Oxygen Transfer Coefficient,” Molecules, vol. 23, no. 1, p. 125, Jan. (2018), doi: 10.3390/molecules23010125. [CrossRef] [PubMed] [Google Scholar]
- D. Dissanayaka and I. Rathnayake, “Effect of Temperature, pH, Carbon and Nitrogen Sources on Extracellular Protease Production by Four Geobacillus Species Isolated from Maha Oya Geothermal Springs in Sri Lanka,” no. 19. [Google Scholar]
- R. Potumarthi, S. Ch., and A. Jetty, “Alkaline protease production by submerged fermentation in stirred tank reactor using Bacillus licheniformis NCIM-2042: Effect of aeration and agitation regimes,” Biochem. Eng. J., vol. 34, no. 2, pp. 185–192, May (2007), doi: 10.1016/j.bej.2006.12.003. [CrossRef] [Google Scholar]
- X. Qu and C. F. Jeff Wu, “One-factor-at-a-time designs of resolution V,” J. Stat. Plan. Inference, vol. 131, no. 2, pp. 407–416, May (2005), doi: 10.1016/j.jspi.2004.03.002. [CrossRef] [Google Scholar]
- Q. Li, “Structure, Application, and Biochemistry of Microbial Keratinases,” Front. Microbiol., vol. 12, p. 674345, (2021), doi: 10.3389/fmicb.2021.674345. [CrossRef] [Google Scholar]
- “Global Keratinase Sales Market, By Product Type (Food Grade, Industrial Grade), By Application (Feed, Cosmetics, Medicine, Other), By Distribution Channel (Online, Offline), By End User (Industrial, Personal), By Manufacturing Process (Biotechnology, Chemical) And By Region (North America, Latin America, Europe, Asia Pacific, Middle East & Africa), Forecast From 2023 to 2031.,” Dataintelo. https://dataintelo.com/report/global-keratinase-sales-market/ (accessed Aug. 14, 2023). [Google Scholar]
- N. E. Nnolim, C. C. Udenigwe, A. I. Okoh, and U. U. Nwodo, “Microbial Keratinase: Next Generation Green Catalyst and Prospective Applications,” Front. Microbiol., vol. 11, p. 580164, Dec. (2020), doi: 10.3389/fmicb.2020.580164. [CrossRef] [Google Scholar]
- J. De Oliveira Martinez et al., “Challenges and Opportunities in Identifying and Characterising Keratinases for Value-Added Peptide Production,” Catalysts, vol. 10, no. 2, p. 184, Feb. (2020), doi: 10.3390/catal10020184. [CrossRef] [Google Scholar]
- J. Qiu, C. Wilkens, K. Barrett, and A. S. Meyer, “Microbial enzymes catalyzing keratin degradation: Classification, structure, function,” Biotechnol. Adv., vol. 44, p. 107607, Nov. (2020), doi: 10.1016/j.biotechadv.2020.107607. [CrossRef] [Google Scholar]
- Chair of Microbiology and Microbial Biotechnology, Department of Animal Science, 8 Biotechnical Faculty, University of Ljubljana, Groblje 3, 1230 Domžale, Slovenia, B. Vidmar, M. Vodovnik, and Chair of Microbiology and Microbial Biotechnology, Department of Animal Science, 8 Biotechnical Faculty, University of Ljubljana, Groblje 3, 1230 Domžale, Slovenia, “Microbial keratinases: enzymes with promising biotechnological 4 applications,” Food Technol. Biotechnol., vol. 56, no. 3, (2018), doi: 10.17113/ftb.56.03.18.5658. [Google Scholar]
- D. Zhu, Q. Wu, and L. Hua, “Industrial Enzymes,” in Comprehensive Biotechnology, Elsevier, (2019), pp. 1–13. doi: 10.1016/B978-0-444-64046-8.00148-8. [Google Scholar]
- Y. Witono, M. Maryanto, I. Taruna, A. D. Masahid, and K. Cahyaningati, “AKTIVITAS ANTIOKSIDAN HIDROLISAT PROTEIN IKAN WADER (Rasbora jacobsoni) DARI HIDROLISIS OLEH ENZIM CALOTROPIN DAN PAPAIN,” J. AGROTEKNOLOGI, vol. 14, no. 01, p. 44, Jul. (2020), doi: 10.19184/jagt.v14i01.14817. [CrossRef] [Google Scholar]
- R. Subramaniyam and R. Vimala, “SOLID STATE AND SUBMERGED FERMENTATION FOR THE PRODUCTION OF BIOACTIVE SUBSTANCES: A COMPARATIVE STUDY,” (2012). Accessed: Jun. 13, 2023. [Online]. Available: https://www.semanticscholar.org/paper/SOLID-STATE-AND-SUBMERGED-FERMENTATION-FOR-THE-OF-A-SubramaniyamVimala/3fcbcdd52361ce36a9b2cd6467f2c766e0c67f76 [Google Scholar]
- R. Rani Singhania, “Production of Celluloytic Enzymes for the Hydrolysis of Lignocellulosic Biomass,” in Biofuels, Elsevier, 2011, pp. 177–201. doi: 10.1016/B978-0-12-385099-7.00008-5. [CrossRef] [Google Scholar]
- J. A. Rodríguez-León, J. C. De Carvalho, A. Pandey, C. R. Soccol, and D. E. RodríguezFernández, “Kinetics of the Solid-State Fermentation Process,” in Current Developments in Biotechnology and Bioengineering, Elsevier, (2018), pp. 57–82. doi: 10.1016/B978-0-444-63990-5.00004-9. [CrossRef] [Google Scholar]
- A. Nighojkar, M. K. Patidar, and S. Nighojkar, “Pectinases: Production and Applications for Fruit Juice Beverages,” in Processing and Sustainability of Beverages, Elsevier, (2019), pp. 235–273. doi: 10.1016/B978-0-12-815259-1.00008-2. [CrossRef] [Google Scholar]
- S. Suharti, H. N. Rozaq, A. Qisti, M. Alvionita, and S. Wonorahardjo, “Keratinase Production by Bacillus sp. MD24 in Sub-merge and Solid State Fermentation,” Malays. J. Fundam. Appl. Sci., vol. 19, no. 3, pp. 460–470, May (2023), doi: 10.11113/mjfas.v19n3.3028. [CrossRef] [Google Scholar]
- S. Maftukhah, “Aplikasi Bacillus sp Pada Produksi Enzim Menggunakan Metode Fermentasi Padat Review,” UNISTEK, vol. 7, no. 1, pp. 6–9, Feb. (2020), doi: 10.33592/unistek.v7i1.471. [CrossRef] [Google Scholar]
- C. Balachandran, A. Vishali, N. A. Nagendran, K. Baskar, A. Hashem, and E. F. Abd_Allah, “Optimization of protease production from Bacillus halodurans under solid state fermentation using agrowastes,” Saudi J. Biol. Sci., vol. 28, no. 8, pp. 4263–4269, Aug. (2021), doi: 10.1016/j.sjbs.2021.04.069. [CrossRef] [Google Scholar]
- N. S. Patil and J. V. Kurhekar, “Optimization of Protease Production by Bacillus isronensis Strain KD3 Isolated from Dairy Industry Effluent”. [Google Scholar]
- I. A. Shaikh et al., “Extracellular Protease Production, Optimization, and Partial Purification from Bacillus nakamurai PL4 and its Applications,” J. King Saud Univ. Sci., vol. 35, no. 1, p. 102429, Jan. (2023), doi: 10.1016/j.jksus.2022.102429. [CrossRef] [Google Scholar]
- Richa Salwan, “Augmentation of protease production from psychrotrophic Acinetobacter sp. IHB B 5011 (MN12) from Western Himalayas,” Biocatal. Agric. Biotechnol., vol. v. 29, pp. 101795-, (2020), doi: 10.1016/j.bcab.2020.101795. [CrossRef] [Google Scholar]
- “Prescott, Harley, and Klein’s Microbiology.” https://www.nhbs.com/prescott-harley-and-kleins-microbiology-book (accessed Aug. 09, 2023). [Google Scholar]
- P. Purkan, H. Purnama, and S. Sumarsih, “Production of Cellulase Enzyme from Aspergilus niger using Rice Husk and Bagasse as Inducer,” J. ILMU DASAR, vol. 16, no. 2, p. 95, Nov. (2016), doi: 10.19184/jid.v16i2.2768. [CrossRef] [Google Scholar]
- F. Mantzouridou, T. Roukas, and P. Kotzekidou, “Effect of the aeration rate and agitation speed on β-carotene production and morphology of Blakeslea trispora in a stirred tank reactor: mathematical modeling,” Biochem. Eng. J., vol. 10, no. 2, pp. 123–135, Mar. (2002), doi: 10.1016/S1369-703X(01)00166-8. [CrossRef] [Google Scholar]
- I. Giavasis, L. M. Harvey, and B. McNeil, “The effect of agitation and aeration on the synthesis and molecular weight of gellan in batch cultures of Sphingomonas paucimobilis,” Enzyme Microb. Technol., vol. 38, no. 1–2, pp. 101–108, Jan. (2006), doi: 10.1016/j.enzmictec.2005.05.003. [CrossRef] [Google Scholar]
- C. Bandaiphet and P. Prasertsan, “Effect of aeration and agitation rates and scale-up on oxygen transfer coefficient, kLa in exopolysaccharide production from Enterobacter cloacae WD7,” Carbohydr. Polym., vol. 66, no. 2, pp. 216–228, Oct. (2006), doi: 10.1016/j.carbpol.2006.03.004. [CrossRef] [Google Scholar]
- H.-Y. Thi Nguyen and G.-B. Tran, “Optimization of Fermentation Conditions and Media for Production of Glucose Isomerase from Bacillus megaterium Using Responsese Surface Methodology,” Scientifica, vol. 2018, pp. 1–11, Sep. (2018), doi: 10.1155/2018/6842843. [Google Scholar]
- Z. Rahman and V. P. Singh, “Bioremediation of toxic heavy metals (THMs) contaminated sites: concepts, applications and challenges,” Environ. Sci. Pollut. Res., vol. 27, no. 22, pp. 27563–27581, Aug. (2020), doi: 10.1007/s11356-020-08903-0. [CrossRef] [PubMed] [Google Scholar]
- S. A. Loutet et al., “The Fate of Intracellular Metal Ions in Microbes,” in Trace Metals and Infectious Diseases, J. O. Nriagu and E. P. Skaar, Eds., Cambridge (MA): MIT Press, (2015). Accessed: Aug. 09, 2023. [Online]. Available: http://www.ncbi.nlm.nih.gov/books/NBK569687/ [Google Scholar]
- B. I. A. Muttaqin, “Telaah Kajian dan Literature Review Design of Experiment (DoE),” J. Adv. Inf. Ind. Technol., vol. 1, no. 1, pp. 33–40, Nov. (2019), doi: 10.52435/jaiit.v1i1.10. [Google Scholar]
- C. D. S. Moreira and F. R. Lourenço, “Development and optimization of a stabilityindicating chromatographic method for verapamil hydrochloride and its impurities in tablets using an analytical quality by design (AQbD) approach,” Microchem. J., vol. 154, p. 104610, May (2020), doi: 10.1016/j.microc.2020.104610. [CrossRef] [Google Scholar]
- A. K. Sahu and V. Jain, “Screening of process variables using Plackett–Burman design in the fabrication of gedunin-loaded liposomes,” Artif. Cells Nanomedicine Biotechnol., vol. 45, no. 5, pp. 1011–1022, Jul. (2017), doi: 10.1080/21691401.2016.1200057. [CrossRef] [PubMed] [Google Scholar]
- Y. El-Malah and S. Nazzal, “Hydrophilic matrices: Application of Placket–Burman screening design to model the effect of POLYOX–carbopol blends on drug release,” Int. J. Pharm., vol. 309, no. 1–2, pp. 163–170, Feb. (2006), doi: 10.1016/j.ijpharm.2005.11.032. [CrossRef] [Google Scholar]
- K. Vanaja and R. H. Shobha Rani, “Design of Experiments: Concept and Applications of Plackett Burman Design,” Clin. Res. Regul. Aff., vol. 24, no. 1, pp. 1–23, Jan. (2007), doi: 10.1080/10601330701220520. [CrossRef] [Google Scholar]
- S. Effendi, A. Mutalib, A. Anggraeni, and H. H. Bahti, “Penggunaan Desain Plackett Burman untuk Seleksi Parameter Pemisahan Logam Tanah Jarang Kelompok Sedang dari Logam Tanah Jarang Kelompok Lainnya dengan Metode Pengendapan,” Al-Kim., vol. 7, no. 1, pp. 1–6, Sep. (2020), doi: 10.15575/ak.v7i1.6486. [Google Scholar]
- A. Qisti, “STUDI PENDAHULUAN PERBEDAAN PROTEASE DARI Bacillus sp. MD24 DAN Bacillus haynesii BK1H,” p. 57, (2022). [Google Scholar]
- M. A. Emran, S. A. Ismail, and A. M. Abdel-Fattah, “Valorization of feather via the microbial production of multi-applicable keratinolytic enzyme,” Biocatal. Agric. Biotechnol., vol. 27, p. 101674, Aug. (2020), doi: 10.1016/j.bcab.2020.101674. [CrossRef] [Google Scholar]
- D. A. Lubis, Ilmu makanan ternak. Pembangunan, 1963. [Google Scholar]
- M. Tamás, S. Sharma, S. Ibstedt, T. Jacobson, and P. Christen, “Heavy Metals and Metalloids As a Cause for Protein Misfolding and Aggregation,” Biomolecules, vol. 4, no. 1, pp. 252–267, Feb. (2014), doi: 10.3390/biom4010252. [CrossRef] [PubMed] [Google Scholar]
- N. D. Ruiter, V. MailÄNder, and H. Kappus, “Effect of heavy metals on cellular growth, metabolism and integrity of cultured Chinese hamster kidney cells,” Xenobiotica, vol. 15, no. 8–9, pp. 665–671, Jan. (1985), doi: 10.3109/00498258509047425. [CrossRef] [PubMed] [Google Scholar]
- S. W. Kim, H. J. Hwang, C. P. Xu, J. W. Choi, and J. W. Yun, “Effect of aeration and agitation on the production of mycelial biomass and exopolysaccharides in an enthomopathogenic fungus Paecilomyces sinclairii,” Lett. Appl. Microbiol., vol. 36, no. 5, pp. 321–326, May (2003), doi: 10.1046/j.1472-765X.2003.01318.x. [CrossRef] [PubMed] [Google Scholar]
- M. M. Bakry, S. S. Salem, H. M. Atta, M. S. El-Gamal, and A. Fouda, “Xylanase from thermotolerant Bacillus haynesii strain, synthesis, characterization, optimization using Box-Behnken Design, and biobleaching activity,” Biomass Convers. Biorefinery, Jul. (2022), doi: 10.1007/s13399-022-03043-6. [Google Scholar]
- T. Robinson, “The effect of inoculum size on the lag phase of Listeria monocytogenes,” Int. J. Food Microbiol., vol. 70, no. 1–2, pp. 163–173, Oct. (2001), doi: 10.1016/S01681605(01)00541-4. [CrossRef] [Google Scholar]
- S. Safaria, N. Idiawati, and T. A. Zaharah, “Efektivitas Campuran Enzim Selulase dari Aspergillus niger dan Trichoderma reesei dalam Menghidrolisis Substrat Serabut KelapaE,” vol. 2, (2013). [Google Scholar]
- W. E. C. Wacker and A. F. Parisi, “Magnesium Metabolism,” N. Engl. J. Med., vol. 278, no. 12, pp. 658–663, Mar. (1968), doi: 10.1056/NEJM196803212781205. [CrossRef] [PubMed] [Google Scholar]
- G. M. Walker, “The Roles of Magnesium in Biotechnology,” Crit. Rev. Biotechnol., vol. 14, no. 4, pp. 311–354, Jan. (1994), doi: 10.3109/07388559409063643. [CrossRef] [PubMed] [Google Scholar]
- T. Guo and J. K. Herman, “Magnesium Modulates Bacillus subtilis Cell Division Frequency,” J. Bacteriol., vol. 205, no. 1, (2023). [Google Scholar]
- D. G. Christensen, J. S. Orr, C. V. Rao, and A. J. Wolfe, “Increasing Growth Yield and Decreasing Acetylation in Escherichia coli by Optimizing the Carbon-to-Magnesium Ratio in Peptide-Based Media,” Appl. Environ. Microbiol., vol. 83, no. 6, pp. e0303416, Mar. (2017), doi: 10.1128/AEM.03034-16. [CrossRef] [Google Scholar]
- N. Sinha and S. Smith-Gill, “Electrostatics in Protein Binding and Function,” Curr. Protein Pept. Sci., vol. 3, no. 6, pp. 601–614, Dec. (2002), doi: 10.2174/1389203023380431. [CrossRef] [Google Scholar]
- M. T. RecordJr, E. S. Courtenay, D. S. Cayley, and H. J. Guttman, “Responseses of E. coli to osmotic stress: large changes in amounts of cytoplasmic solutes and water,” Trends Biochem. Sci., vol. 23, no. 4, pp. 143–148, Apr. (1998), doi: 10.1016/S09680004(98)01196-7. [CrossRef] [Google Scholar]
- M. Irfan, U. Asghar, M. Nadeem, R. Nelofer, and Q. Syed, “Optimization of process parameters for xylanase production by Bacillus sp. in submerged fermentation,” J. Radiat. Res. Appl. Sci., vol. 9, no. 2, pp. 139–147, Apr. (2016), doi: 10.1016/j.jrras.2015.10.008. [Google Scholar]
- C. Schiraldi and M. De Rosa, “Mesophilic Organisms,” in Encyclopedia of Membranes, E. Drioli and L. Giorno, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, (2014), pp. 1–2. doi: 10.1007/978-3-642-40872-4_1610-2. [Google Scholar]
- R. Gupta, R. Sharma, and Q. K. Beg, “Revisiting microbial keratinases: next generation proteases for sustainable biotechnology,” Crit. Rev. Biotechnol., vol. 33, no. 2, pp. 216–228, Jun. (2013), doi: 10.3109/07388551.2012.685051. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.