Open Access
Issue
E3S Web Conf.
Volume 481, 2024
International Conference on Sustainable Chemistry (ICSChem 2023)
Article Number 06011
Number of page(s) 9
Section Renewable Resource
DOI https://doi.org/10.1051/e3sconf/202448106011
Published online 26 January 2024
  1. H. Tu, M. Zhu, B. Duan, and L. Zhang, “Recent Progress in High‐Strength and Robust Regenerated Cellulose Materials,” Advanced Materials, vol. 33, no. 28, p. 2000682, Jul. 2021, doi: 10.1002/adma.202000682. [CrossRef] [Google Scholar]
  2. E. S. Choi, H. C. Kim, R. M. Muthoka, P. S. Panicker, D. O. Agumba, and J. Kim, “Aligned cellulose nanofiber composite made with electrospinning of cellulose nanofiber Polyvinyl alcohol and its vibration energy harvesting,” Composites Science and Technology, vol. 209, p. 108795, Jun. 2021, doi: 10.1016/j.compscitech.2021.108795. [CrossRef] [Google Scholar]
  3. R. Ghafari, R. Scaffaro, A. Maio, E. F. Gulino, G. Lo Re, and M. Jonoobi, “Processingstructure-property relationships of electrospun PLA-PEO membranes reinforced with enzymatic cellulose nanofibers,” Polymer Testing, vol. 81, p. 106182, Jan. 2020, doi: 10.1016/j.polymertesting.2019.106182. [CrossRef] [Google Scholar]
  4. M. Sánchez-Gutiérrez, I. Bascón-Villegas, E. Espinosa, E. Carrasco, F. PérezRodríguez, and A. Rodríguez, “Cellulose Nanofibers from Olive Tree Pruning as Food Packaging Additive of a Biodegradable Film,” Foods, vol. 10, no. 7, p. 1584, Jul. 2021, doi: 10.3390/foods10071584. [CrossRef] [PubMed] [Google Scholar]
  5. Q. Liang, W. Pan, and Q. Gao, “Preparation of carboxymethyl starch/polyvinylalcohol electrospun composite nanofibers from a green approach,” International Journal of Biological Macromolecules, vol. 190, pp. 601–606, Nov. 2021, doi: 10.1016/j.ijbiomac.2021.09.015. [CrossRef] [PubMed] [Google Scholar]
  6. R. Radakisnin, M. S. Abdul Majid, M. R. M. Jamir, M. Jawaid, M. T. H. Sultan, and M. F. Mat Tahir, “Structural, Morphological and Thermal Properties of Cellulose Nanofibers from Napier fiber (Pennisetum purpureum),” Materials, vol. 13, no. 18, p. 4125, Sep. 2020, doi: 10.3390/ma13184125. [CrossRef] [PubMed] [Google Scholar]
  7. K. Heise et al., “Nanocellulose: Recent Fundamental Advances and Emerging Biological and Biomimicking Applications,” Advanced Materials, vol. 33, no. 3, p. 2004349, Jan. 2021, doi: 10.1002/adma.202004349. [CrossRef] [Google Scholar]
  8. L. Chen et al., “Enhancement strategy of mechanical property by constructing of energetic RDX@CNFs composites in propellants, and investigation on its combustion and sensitivity behavior,” Combustion and Flame, vol. 244, p. 112249, Oct. 2022, doi: 10.1016/j.combustflame.2022.112249. [CrossRef] [Google Scholar]
  9. T.-Y. Yu et al., “Effect of cellulose compositions and fabrication methods on mechanical properties of polyurethane-cellulose composites,” Carbohydrate Polymers, vol. 291, p. 119549, Sep. 2022, doi: 10.1016/j.carbpol.2022.119549. [CrossRef] [PubMed] [Google Scholar]
  10. H. Aziam et al., “Phosphorylated cellulose nanofiber as sustainable organic filler and potential flame-retardant for all-solid-state lithium batteries,” Journal of Energy Storage, vol. 62, p. 106838, Jun. 2023, doi: 10.1016/j.est.2023.106838. [CrossRef] [Google Scholar]
  11. F. A. Alexander, L. Johnson, K. Williams, and K. Packer, “A Parameter Study for 3DPrinting Organized Nanofibrous Collagen Scaffolds Using Direct-Write Electrospinning,” Materials, vol. 12, no. 24, p. 4131, Dec. 2019, doi: 10.3390/ma12244131. [CrossRef] [PubMed] [Google Scholar]
  12. C. Bavatharani et al., “Electrospinning technique for production of polyaniline nanocomposites/nanofibres for multi-functional applications: A review,” Synthetic Metals, vol. 271, p. 116609, Jan. 2021, doi: 10.1016/j.synthmet.2020.116609. [CrossRef] [Google Scholar]
  13. A. Mamun, T. Blachowicz, and L. Sabantina, “Electrospun Nanofiber Mats for Filtering Applications—Technology, Structure and Materials,” Polymers, vol. 13, no. 9, p. 1368, Apr. 2021, doi: 10.3390/polym13091368. [CrossRef] [PubMed] [Google Scholar]
  14. A. Floranda, M. Situmorang, K. Tarigan, D. Bonardo, and I. V. Albadi’ah, “Design and construction of high voltage electrospinning with flyback based power supply for nanofibers manufacturing applications,” the International Conference on Advanced Material and Technology (Icamt) 2021, vol. 2708, p. 040002, 2022, doi: 10.1063/5.0123812. [CrossRef] [Google Scholar]
  15. M. A. R. Lubis et al., “Modification of Ramie Fiber via Impregnation with Low Viscosity Bio-Polyurethane Resins Derived from Lignin,” Polymers, vol. 14, no. 11, p. 2165, 2022, doi: 10.3390/polym14112165. [CrossRef] [PubMed] [Google Scholar]
  16. K. Dhali, M. Ghasemlou, F. Daver, P. Cass, and B. Adhikari, “A review of nanocellulose as a new material towards environmental sustainability,” Science of the Total Environment, vol. 775, p. 145871, 2021, doi: 10.1016/j.scitotenv.2021.145871. [CrossRef] [Google Scholar]
  17. X. Wang et al., “Isolation and characterization of lignocellulosic nanofibers from four kinds of organosolv-fractionated lignocellulosic materials,” Wood Science and Technology, vol. 54, no. 3, pp. 503–517, 2020, doi: 10.1007/s00226-020-01167-4. [CrossRef] [Google Scholar]
  18. T. Yuan, J. Zeng, B. Wang, Z. Cheng, and K. Chen, “Lignin containing cellulose nanofibers (LCNFs): Lignin content-morphology-rheology relationships,” Carbohydrate Polymers, vol. 254, no. September 2020, p. 117441, 2021, doi: 10.1016/j.carbpol.2020.117441. [CrossRef] [PubMed] [Google Scholar]
  19. I. A. Jankowska, K. Pogorzelec-Glaser, P. Ławniczak, M. Matczak, and R. Pankiewicz, “New liquid-free proton conductive nanocomposite based on imidazole-functionalized cellulose nanofibers,” Cellulose, vol. 28, no. 2, pp. 843–854, 2021, doi: 10.1007/s10570-020-03588-7. [CrossRef] [Google Scholar]
  20. Z. Xia, J. Li, J. Zhang, X. Zhang, X. Zheng, and J. Zhang, “Processing and valorization of cellulose, lignin and lignocellulose using ionic liquids,” Journal of Bioresources and Bioproducts, vol. 5, no. 2, pp. 79–95, 2020, doi: 10.1016/j.jobab.2020.04.001. [CrossRef] [Google Scholar]
  21. D. Bonardo, N. Darsono, S. Humaidi, A. Imaduddin, and N. S. Silalahi, “Effect of calcination frequency on the thermoelectric properties of Ti doped CuCrO2 by solid state method,” Journal of Metals, Materials and Minerals, vol. 33, no. 4, p. 1785, Dec. 2023, doi: 10.55713/jmmm.v33i4.1785. [CrossRef] [Google Scholar]
  22. S. A. Salim, S. A. Loutfy, E. M. El-Fakharany, T. H. Taha, Y. Hussien, and E. A. Kamoun, “Influence of chitosan and hydroxyapatite incorporation on properties of electrospun PVA/HA nanofibrous mats for bone tissue regeneration: Nanofibers optimization and in-vitro assessment,” Journal of Drug Delivery Science and Technology, vol. 62, p. 102417, Apr. 2021, doi: 10.1016/j.jddst.2021.102417. [CrossRef] [Google Scholar]
  23. K. Zhao et al., “Cellulose nanofibril/PVA/bamboo activated charcoal aerogel sheet with excellent capture for PM2.5 and thermal stability,” Carbohydrate Polymers, vol. 291, p. 119625, Sep. 2022, doi: 10.1016/j.carbpol.2022.119625. [CrossRef] [PubMed] [Google Scholar]
  24. A. Ház, M. Jablonský, I. Šurina, F. Kačík, T. Bubeníková, and J. Ďurkovič, “Chemical composition and thermal behavior of kraft lignins,” Forests, vol. 10, no. 6, pp. 1–12, 2019, doi: 10.3390/f10060483. [Google Scholar]
  25. H.-J. Kim, S. Roy, and J.-W. Rhim, “Effects of various types of cellulose nanofibers on the physical properties of the CNF-based films,” Journal of Environmental Chemical Engineering, vol. 9, no. 5, p. 106043, Oct. 2021, doi: 10.1016/j.jece.2021.106043. [CrossRef] [Google Scholar]
  26. P. G. Gan, S. T. Sam, M. F. bin Abdullah, and M. F. Omar, “Thermal properties of nanocellulose‐reinforced composites: A review,” Journal of Applied Polymer Science, vol. 137, no. 11, p. 48544, Mar. 2020, doi: 10.1002/app.48544. [CrossRef] [Google Scholar]
  27. J. Kim et al., “Eco-friendly alkaline lignin/cellulose nanofiber drying system for efficient redispersion behavior,” Carbohydrate Polymers, vol. 282, no. November 2021, p. 119122, 2022, doi: 10.1016/j.carbpol.2022.119122. [CrossRef] [PubMed] [Google Scholar]
  28. Z. Bao, C. Xian, Q. Yuan, G. Liu, and J. Wu, “Natural Polymer-Based Hydrogels with Enhanced Mechanical Performances: Preparation, Structure, and Property,” Advanced Healthcare Materials, vol. 8, no. 17, pp. 1–11, 2019, doi: 10.1002/adhm.201900670. [CrossRef] [Google Scholar]
  29. A. A. Adam et al., “State of the art and new directions on electrospun lignin/cellulose nanofibers for supercapacitor application: A systematic literature review,” Polymers, vol. 12, no. 12, pp. 1–36, 2020, doi: 10.3390/polym12122884. [Google Scholar]
  30. S. H. Zainal, N. H. Mohd, N. Suhaili, F. H. Anuar, A. M. Lazim, and R. Othaman, “Preparation of cellulose-based hydrogel: A review,” Journal of Materials Research and Technology, vol. 10, pp. 935–952, 2021, doi: 10.1016/j.jmrt.2020.12.012. [CrossRef] [Google Scholar]
  31. K. S. Somvanshi and P. C. Gope, “Effect of ultrasonication and fiber treatment on mechanical and thermal properties of polyvinyl alcohol/cellulose fiber nano‐ biocomposite film,” Polymer Composites, vol. 42, no. 10, pp. 5310–5322, Oct. 2021, doi: 10.1002/pc.26225. [CrossRef] [Google Scholar]
  32. S. Huang, X. Wang, Y. Zhang, Y. Meng, F. Hua, and X. Xia, “Cellulose nanofibers/polyvinyl alcohol blends as an efficient coating to improve the hydrophobic and oleophobic properties of paper,” Scientific Reports, vol. 12, no. 1, p. 16148, Sep. 2022, doi: 10.1038/s41598-022-20499-8. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.