Open Access
Issue
E3S Web Conf.
Volume 582, 2024
1st International Conference on Materials Sciences and Mechatronics for Sustainable Energy and the Environment (MSMS2E 2024)
Article Number 01001
Number of page(s) 18
Section Sustainable and Renewable Energy
DOI https://doi.org/10.1051/e3sconf/202458201001
Published online 22 October 2024
  1. F. S. Al-Ismail, DC Microgrid Planning, Operation, and Control: A Comprehensive Review. IEEE Access 9, 36154–36172 (2021). https://doi.org/10.1109/ACCESS.2021.3062840 [CrossRef] [Google Scholar]
  2. A. Youssfi, A. Alioui, Y. A. El Kadi, Study, simulation and realization of a fuzzy logicbased MPPT controller in an isolated DC microgrid. Indones. J. Electr. Eng. Comput. Sci. 34, 1420–1433 (2024). https://doi.org/10.11591/IJEECS.V34.I3.PP1420-1433 [Google Scholar]
  3. M. Yaqoot, P. Diwan, T. C. Kandpal, Review of barriers to the dissemination of decentralized renewable energy systems. Renew. Sustain. Energy Rev. 58, 477–490 (2016). https://doi.org/10.1016/J.RSER.2015.12.224 [CrossRef] [Google Scholar]
  4. S. K. Sahoo, A. K. Sinha, N. K. Kishore, Control Techniques in AC, DC, and Hybrid AC-DC Microgrid: A Review. IEEE J. Emerg. Sel. Top. Power Electron. 6, 738–759 (2018). https://doi.org/10.1109/JESTPE.2017.2786588 [CrossRef] [Google Scholar]
  5. J. Rocabert, A. Luna, F. Blaabjerg, P. Rodríguez, Control of power converters in AC microgrids. IEEE Trans. Power Electron. 27, 4734–4749 (2012). https://doi.org/10.1109/TPEL.2012.2199334 [CrossRef] [Google Scholar]
  6. A. Bidram, A. Davoudi, Hierarchical structure of microgrids control system. IEEE Trans. Smart Grid 3, 1963–1976 (2012). https://doi.org/10.1109/TSG.2012.2197425 [CrossRef] [Google Scholar]
  7. A. Mohammed, S. S. Refaat, S. Bayhan, H. Abu-Rub, AC Microgrid Control and Management Strategies: Evaluation and Review. IEEE Power Electron. Mag. 6, 18–31 (2019). https://doi.org/10.1109/MPEL.2019.2910292 [CrossRef] [Google Scholar]
  8. E. Rokrok, M. Shafie-khah, J. P. S. Catalão, Review of primary voltage and frequency control methods for inverter-based islanded microgrids with distributed generation. Renew. Sustain. Energy Rev. 82, 3225–3235 (2018). https://doi.org/10.1016/J.RSER.2017.10.022 [CrossRef] [Google Scholar]
  9. W. Issa, S. Sharkh, M. Abusara, A review of recent control techniques of drooped inverter-based AC microgrids. Energy Sci. Eng. 12, 1792–1814 (2024). https://doi.org/10.1002/ESE3.1670 [CrossRef] [Google Scholar]
  10. Q. C. Zhong, Robust droop controller for accurate proportional load sharing among inverters operated in parallel. IEEE Trans. Ind. Electron. 60, 1281–1290 (2013). https://doi.org/10.1109/TIE.2011.2146221 [CrossRef] [Google Scholar]
  11. N. M. Dawoud, T. F. Megahed, S. S. Kaddah, Enhancing the performance of multimicrogrid with high penetration of renewable energy using modified droop control. Electric Power Syst. Res. 201, 107538 (2021). https://doi.org/10.1016/J.EPSR.2021.107538 [CrossRef] [Google Scholar]
  12. A. Rashwan, A. Mikhaylov, T. Senjyu, M. Eslami, A. M. Hemeida, D. S. M. Osheba, Modified Droop Control for Microgrid Power-Sharing Stability Improvement. Sustainability 15, 11220 (2023). https://doi.org/10.3390/SU151411220 [CrossRef] [Google Scholar]
  13. B. Long, X. Y. Li, J. Rodriguez, J. M. Guerrero, K. T. Chong, Frequency stability enhancement of an islanded microgrid: A fractional-order virtual synchronous generator. Int. J. Electr. Power Energy Syst. 147, 108896 (2023). https://doi.org/10.1016/J.IJEPES.2022.108896 [CrossRef] [Google Scholar]
  14. M. M. Elwakil, H. M. E. Zoghaby, S. M. Sharaf, M. A. Mosa, Adaptive virtual synchronous generator control using optimized bang-bang for Islanded microgrid stability improvement. Protect. Control Mod. Power Syst. 8, 1 (2023). https://doi.org/10.1186/S41601-023-00333-7 [CrossRef] [Google Scholar]
  15. B. Li, C. Yu, X. Lu, F. Wang, A novel adaptive droop control strategy for SoC balance in PV-based DC microgrids. ISA Trans. 141, 351–364 (2023). https://doi.org/10.1016/J.ISATRA.2023.07.008 [CrossRef] [PubMed] [Google Scholar]
  16. D. C. D. S. Junior, J. S. Dohler, P. M. D. Almeida, J. G. D. Oliveira, Droop control for power sharing and voltage and frequency regulation in parallel distributed generations on AC microgrid. 2018 13th IEEE Int. Conf. Ind. Appl. INDUSCON 2018, 1–6 (2018). https://doi.org/10.1109/INDUSCON.2018.8627328 [Google Scholar]
  17. S. G. Ndeh, D. K. Ngwashi, L. K. Letting, C. D. Iweh, E. Tanyi, Power sharing enhancement through a decentralized droop-based control strategy in an islanded microgrid. e-Prime Adv. Electr. Eng. Electron. Energy 7, 100433 (2024). https://doi.org/10.1016/J.PRIME.2024.100433 [CrossRef] [Google Scholar]
  18. Q. C. Zhong, Robust droop controller for accurate proportional load sharing among inverters operated in parallel. IEEE Trans. Ind. Electron. 60, 1281–1290 (2013). https://doi.org/10.1109/TIE.2011.2146221 [CrossRef] [Google Scholar]
  19. P. Zhou et al., Analysis of Virtual Impedance Control Characteristics of Microgrid Power Supply. J. Phys. Conf. Ser. 1846, 012056 (2021). https://doi.org/10.1088/17426596/1846/1/012056 [CrossRef] [Google Scholar]
  20. W. Issa, A. Elkhateb, Virtual Impedance Impact on Inverter Control Topologies. 7th Int. IEEE Conf. Renew. Energy Res. Appl. ICRERA 2018, 1423–1428 (2018). https://doi.org/10.1109/ICRERA.2018.8566985 [Google Scholar]
  21. B. Mishra, M. Pattnaik, A modified droop-based decentralized control strategy for accurate power sharing in a PV-based islanded AC microgrid. ISA Trans. 153, 467–481 (2024). https://doi.org/10.1016/J.ISATRA.2024.07.032 [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.