Open Access
Issue
E3S Web Conf.
Volume 582, 2024
1st International Conference on Materials Sciences and Mechatronics for Sustainable Energy and the Environment (MSMS2E 2024)
Article Number 01002
Number of page(s) 8
Section Sustainable and Renewable Energy
DOI https://doi.org/10.1051/e3sconf/202458201002
Published online 22 October 2024
  1. H. Chen, T. N. Cong, W. Yang, C. Tan, Y. Li, Y. Ding, Progress in electrical energy storage system: A critical review. Prog. Nat. Sci. 19, 291–312 (2009). https://doi.org/10.1016/j.pnsc.2008.07.014 [CrossRef] [Google Scholar]
  2. J.-M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001). https://doi.org/10.1038/35104644 [CrossRef] [PubMed] [Google Scholar]
  3. V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 4, 3243 (2011). https://doi.org/10.1039/c1ee01598b [CrossRef] [Google Scholar]
  4. A. Manthiram, X. Yu, S. Wang, Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017). https://doi.org/10.1038/natrevmats.2016.103 [CrossRef] [Google Scholar]
  5. Y. Liang et al., A review of rechargeable batteries for portable electronic devices. InfoMat 1, 6–32 (2019). https://doi.org/10.1002/inf2.12000 [CrossRef] [Google Scholar]
  6. A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, Phospho‐olivines as positive‐ electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144, 1188–1194 (1997). https://doi.org/10.1149/1.1837571 [CrossRef] [Google Scholar]
  7. W.-J. Zhang, Structure and performance of LiFePO4 cathode materials: A review. J. Power Sources 196, 2962–2970 (2011). https://doi.org/10.1016/j.jpowsour.2010.11.113 [CrossRef] [Google Scholar]
  8. A. R. Armstrong, P. G. Bruce, Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature 381, 499–500 (1996). https://doi.org/10.1038/381499a0 [CrossRef] [Google Scholar]
  9. K. Mizushima, P. C. Jones, P. J. Wiseman, J. B. Goodenough, LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density. Mater. Res. Bull. 15, 783–789 (1980). https://doi.org/10.1016/0025-5408(80)90012-4 [CrossRef] [Google Scholar]
  10. R. Marom, S. F. Amalraj, N. Leifer, D. Jacob, D. Aurbach, A review of advanced and practical lithium battery materials. J. Mater. Chem. 21, 9938 (2011). https://doi.org/10.1039/c0jm04225k [CrossRef] [Google Scholar]
  11. M. S. Whittingham, Lithium batteries and cathode materials. Chem. Rev. 104, 4271–4302 (2004). https://doi.org/10.1021/cr020731c [CrossRef] [Google Scholar]
  12. M. M. Thackeray, W. I. F. David, P. G. Bruce, J. B. Goodenough, Lithium insertion into manganese spinels. Mater. Res. Bull. 18, 461–472 (1983). https://doi.org/10.1016/0025-5408(83)90138-1 [CrossRef] [Google Scholar]
  13. K. T. Lai, I. Antonyshyn, Y. Prots, M. Valldor, Anti-perovskite Li-battery cathode materials. J. Am. Chem. Soc. 139, 9645–9649 (2017). https://doi.org/10.1021/jacs.7b04444 [CrossRef] [PubMed] [Google Scholar]
  14. D. Mikhailova et al., Operando studies of antiperovskite lithium battery cathode material (Li2Fe)SO. ACS Appl. Energy Mater. 1, 6593–6599 (2018). https://doi.org/10.1021/acsaem.8b01493 [CrossRef] [Google Scholar]
  15. P. Blaha, K. Schwarz, P. Sorantin, S. B. Trickey, Full-potential, linearized augmented plane wave programs for crystalline systems. Comput. Phys. Commun. 59, 399–415 (1990). https://doi.org/10.1016/0010-4655(90)90187-6 [CrossRef] [Google Scholar]
  16. F. Tran, P. Blaha, Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102, 226401 (2009). https://doi.org/10.1103/PhysRevLett.102.226401 [CrossRef] [PubMed] [Google Scholar]
  17. Z. Lu, F. Ciucci, Anti-perovskite cathodes for lithium batteries. J. Mater. Chem. A 6, 5185–5192 (2018). https://doi.org/10.1039/C7TA11074J [CrossRef] [Google Scholar]
  18. Z. Zarhri, Y. Ziat, O. El Rhazouani, A. Benyoussef, A. Elkenz, Titanium atoms dimerization phenomenon and magnetic properties of titanium-antisite (TiO) and chromium doped rutile TiO2, ab-initio calculation. J. Phys. Chem. Solids 94, 12–16 (2016). https://doi.org/10.1016/j.jpcs.2016.03.002 [CrossRef] [Google Scholar]
  19. N. Xin et al., Improving the thermoelectric performance of Cu-doped MoS2 film by band structure modification and microstructural regulation. Appl. Surf. Sci. 611, 155611 (2023). https://doi.org/10.1016/j.apsusc.2022.155611 [CrossRef] [Google Scholar]
  20. Y. Li et al., Intrinsic electron mobility and lattice thermal conductivity of β-Si3N4 from first-principles. Solid State Commun. 361, 115066 (2023). https://doi.org/10.1016/j.ssc.2023.115066 [CrossRef] [Google Scholar]
  21. X.-M. Zheng et al., Superior Li storage anode based on novel Fe-Sn-P alloy prepared by electroplating. Electrochim. Acta 247, 314–320 (2017). https://doi.org/10.1016/j.electacta.2017.07.002 [CrossRef] [Google Scholar]
  22. M. A. M. M. Al-samet, E. Burgaz, Improving the lithium-ion diffusion and electrical conductivity of LiFePO4 cathode material by doping magnesium and multi-walled carbon nanotubes. J. Alloys Compd. 947, 169680 (2023). https://doi.org/10.1016/j.jallcom.2023.169680 [CrossRef] [Google Scholar]
  23. Y. Da, J. Zhou, Microscopic mechanisms of Mn-doped CaCO3 heat carrier with enhanced optical absorption and accelerated decomposition kinetics for directly storing solar energy. Sol. Energy Mater. Sol. Cells 250, 112103 (2023). https://doi.org/10.1016/j.solmat.2022.112103 [CrossRef] [Google Scholar]
  24. S. Han et al., Modification of the band gap of Ruddlesden-Popper perovskites Srn+1TinO3n+1 (n=1, 2, 3, and ∞) by Fe ion irradiation doping. Ceram. Int. 49, 7396–7403 (2023). https://doi.org/10.1016/j.ceramint.2022.10.209 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.