Open Access
Issue
E3S Web Conf.
Volume 582, 2024
1st International Conference on Materials Sciences and Mechatronics for Sustainable Energy and the Environment (MSMS2E 2024)
Article Number 02004
Number of page(s) 13
Section Materials Sciences in Energy
DOI https://doi.org/10.1051/e3sconf/202458202004
Published online 22 October 2024
  1. K. Albe, Y. Ritter, D. Şopu, Enhancing the plasticity of metallic glasses: shear band formation, nanocomposites and nanoglasses investigated by molecular dynamics simulations. Mech. Mater. 67, 94–103 (2013). [CrossRef] [Google Scholar]
  2. W.H. Wang, The elastic properties, elastic models and elastic perspectives of metallic glasses. Prog. Mater. Sci. 57, 487–656 (2012). [CrossRef] [Google Scholar]
  3. X.D. Wang, J. Bednarcik, H. Franz, H.B. Lou, Z.H. He, Q.P. Cao, J.Z. Jiang, Local strain behavior of bulk metallic glasses under tension studied by in situ x-ray diffraction. Appl. Phys. Lett. 94, 011911 (2009). [CrossRef] [Google Scholar]
  4. Y.Q. Cheng, H.W. Sheng, E. Ma, Relationship between structure, dynamics, and mechanical properties in metallic glass-forming alloys. Phys. Rev. B 78, 014207 (2008). [CrossRef] [Google Scholar]
  5. Y.Q. Cheng, E. Ma, Atomic-level structure and structure–property relationship in metallic glasses. Prog. Mater. Sci. 56, 379–473 (2011). [CrossRef] [Google Scholar]
  6. W.H. Wang, The elastic properties, elastic models and elastic perspectives of metallic glasses. Prog. Mater. Sci. 57, 487–656 (2012). [CrossRef] [Google Scholar]
  7. Y. Shi, M.L. Falk, Strain localization and percolation of stable structure in amorphous solids. Phys. Rev. Lett. 95, 095502 (2005). DOI: 10.1103/PhysRevLett.95.095502 [CrossRef] [PubMed] [Google Scholar]
  8. S. Assouli, H. Jabraoui, T. El Hafi, O. Bajjou, A. Kotri, M. Mazroui, Y. Lachtioui, Exploring the impact of cooling rates and pressure on fragility and structural transformations in iron monatomic metallic glasses: Insights from molecular dynamics simulations. J. Non-Crystal. Solids 621, 122623 (2023). DOI: 10.1016/j.jnoncrysol.2023.122623 [CrossRef] [Google Scholar]
  9. T. El Hafi, S. Assouli, O. Bajjou, H. Jabraoui, A. Kotri, M. Mazroui, Y. Lachtioui, Microstructural and mechanical behaviors of Nickel pure metallic glass investigated by molecular dynamics simulations. Proc. 3rd Int. Conf. Innov. Res. Appl. Sci. Eng. Technol. (IRASET), 1 (2023). [Google Scholar]
  10. A. Samiri, A. Khmich, H. Haouas, A. Hassani, A. Hasnaoui, Structural and mechanical behaviors of Mg-Al metallic glasses investigated by molecular dynamics simulations. Comput. Mater. Sci. 184, 109895 (2020). DOI: 10.1016/j.commatsci.2020.109895 [CrossRef] [Google Scholar]
  11. M. Kbirou, A. Hasnaoui, K. Saadouni, M. Badawi, M. Mazroui, Pressure effects on local atomic structure of Ni15Co15Al70 metallic glasses. Comput. Mater. Sci. 166, 20–29 (2019). DOI: 10.1016/j.commatsci.2019.04.052 [CrossRef] [Google Scholar]
  12. T. El Hafi, O. Bajjou, H. Jabraoui, J. Louafi, M. Mazroui, Y. Lachtioui, Effects of cooling rate on the glass formation process and the microstructural evolution of Silver mono-component metallic glass. Chem. Phys. 569, 111873 (2023). [CrossRef] [Google Scholar]
  13. A. EL Kharraz, T. El Hafi, S. Assouli, A. Samiri, A. Kotri, O. Bajjou, Y. Lachtioui, Mechanical and structural properties of monatomic zirconium metallic glass under pressure variations and annealing processes: A molecular dynamics study. Solid State Commun. 392, 115644 (2024). [CrossRef] [Google Scholar]
  14. T. El Hafi, H. Jabraoui, O. Bajjou, M. Mazroui, Y. Lachtioui, Exploring structural and dynamic characteristics of supercooled liquid silver under varying hydrostatic pressures: A molecular dynamics investigation. Solid State Commun. 392, 115664 (2024). [CrossRef] [Google Scholar]
  15. Y. Lachtioui, M. Kbirou, K. Saadouni, M. Sajieddine, M. Mazroui, Glass formation and structure evolution in the rapidly solidified monatomic metallic liquid Pt under high pressure. Chem. Phys. 538, 110805 (2020). [CrossRef] [Google Scholar]
  16. S. Assouli, T. El Hafi, A. El Kharraz, H. Jabraoui, O. Bajjou, Y. Lachtioui, Influence of chromium addition and cooling rate on kinetic and microstructural evolution in FexCr100-x metallic glasses. E3S Web of Conf. 469, 00080 (2023). [CrossRef] [EDP Sciences] [Google Scholar]
  17. L. Wang, X. Li, M. Gao, X. Zeng, Stabilization mechanism and weld morphological features of fiber laser-arc hybrid welding of pure copper. J. Manuf. Process. 27, 207–213 (2017). DOI: 10.1016/j.jmapro.2017.05.009 [CrossRef] [Google Scholar]
  18. M. Roger et al., Impact of copper ligand mutations on a cupredoxin with a green copper center. Biochim. Biophys. Acta Bioenerg. 1858, 351–359 (2017). DOI: 10.1016/j.bbabio.2017.02.007 [CrossRef] [Google Scholar]
  19. J. Zhang, C. Liu, Y. Shu, J. Fan, Growth and properties of Cu thin film deposited on Si(0 0 1) substrate: A molecular dynamics simulation study. Appl. Surf. Sci. 261, 690–696 (2012). DOI: 10.1016/j.apsusc.2012.08.082 [CrossRef] [Google Scholar]
  20. S. Plimpton, Fast Parallel Algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995). [CrossRef] [Google Scholar]
  21. LAMMPS Users Manual, Sandia National Laboratories, 2023. https://docs.lammps.org/Manual.html [Google Scholar]
  22. A. Olivei, Surface imaging by scanning-laser-induced voltage. J. Phys. D Appl. Phys. 9, 183–195 (1976). DOI: 10.1088/0022-3727/9/2/008 [CrossRef] [Google Scholar]
  23. M.I. Mendelev, M.J. Kramer, C.A. Becker, M. Asta, Analysis of semi-empirical interatomic potentials appropriate for simulation of crystalline and liquid Al and Cu. Philos. Mag. 88, 1723–1750 (2008). DOI: 10.1080/14786430802206482 [CrossRef] [Google Scholar]
  24. A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Modell. Simul. Mater. Sci. Eng. 18, 015012 (2009). [Google Scholar]
  25. A. Kotri, Y. Belkassmi, M. Gounzari, Y. Lachtioui, B. Boughazi, M. Sahal, Atomistic insights into the effect of cooling rates on the structural and mechanical properties of Vanadium monatomic metallic glass. Chinese J. Phys. 79, 503–513 (2022). [CrossRef] [Google Scholar]
  26. R.S. Liu, D.W. Qi, S.F. Wang, Neutron-diffraction study of the antiferromagnetic form factor of La2NiO4. Phys. Rev. B 45, 451 (1992). [CrossRef] [PubMed] [Google Scholar]
  27. M. Kbirou, S. Trady, A. Hasnaoui, M. Mazroui, Cooling rate dependence and local structure in aluminum monatomic metallic glass. Philos. Mag. 97, 2753–2771 (2017). [CrossRef] [Google Scholar]
  28. L. Zhang et al., Pressure-induced Polyamorphism by Quantitative Structure Factor and Pair Distribution Function Analysis in Two Ce-based Metallic Glasses (2016). [Google Scholar]
  29. H.W. Sheng et al., Polyamorphism in a metallic glass. Nat. Mater. (2007). DOI: 10.1038/nmat1839 [Google Scholar]
  30. X.L. Bian, G. Wang, H.C. Chen, L. Yan, J.G. Wang, Q. Wang, P.F. Hu, J.L. Ren, K.C. Chan, N. Zheng, A. Teresiak, Y.L. Gao, Q.J. Zhai, J. Eckert, J. Beadsworth, K.A. Dahmen, P.K. Liaw, Manipulation of free volumes in a metallic glass through Xe-ion irradiation. Acta Mater. 106, 66–77 (2016). [CrossRef] [Google Scholar]
  31. H.A. Tabatabaee, R. Velasquez, H.U. Bahia, Predicting low temperature physical hardening in asphalt binders. Constr. Build. Mater. 34, 162–169 (2012). DOI: 10.1016/j.conbuildmat.2012.02.039 [CrossRef] [Google Scholar]
  32. D. Version, metallic glass bulk metallic glass. DOI: 10.1063/1.1675937 [Google Scholar]
  33. K. Samwer, R. Busch, W.L. Johnson, Change of Compressibility at the Glass Transition and Prigogine-Defay Ratio in ZrTiCuNiBe Alloys (1999). [Google Scholar]
  34. J. Finney, Random packings and the structure of simple liquids. I. The geometry of random close packing. Proc. R. Soc. Lond. A 319, 479–493 (1970). [CrossRef] [Google Scholar]
  35. J.A. Phys, Shortand medium-range orders in Cu46Zr54 metallic glasses under shock compression. J. Appl. Phys. 015901 (2018). DOI: 10.1063/1.4923408 [Google Scholar]
  36. B.J. Demaske et al., Atomic-level deformation of Cu46Zr54 metallic glasses under shock loading. J. Appl. Phys. 215101 (2018). DOI: 10.1063/1.5025650 [Google Scholar]
  37. P.H. Gaskell, A new structural model for transition metal–metalloid glasses. Nature 276, 484–485 (1978). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.