Open Access
Issue
E3S Web Conf.
Volume 582, 2024
1st International Conference on Materials Sciences and Mechatronics for Sustainable Energy and the Environment (MSMS2E 2024)
Article Number 02003
Number of page(s) 12
Section Materials Sciences in Energy
DOI https://doi.org/10.1051/e3sconf/202458202003
Published online 22 October 2024
  1. H. Wang, M. Asif Amjad, N. Arshed, A. Mohamed, S. Ali, M. A. Haider Jafri, & Y. A. Khan, Fossil energy demand and economic development in BRICS countries. Front. Energy Res., 10(842793), 10–3389 (2022). [Google Scholar]
  2. H. Ma. Rehman, M. Ahmad, M. Irfan, O. Traore, & A. A. Chandio, Towards environmental sustainability: Devolving the influence of carbon dioxide emission to population growth, climate change, forestry, livestock, and crops production in Pakistan. Eco. Ind., 125, 107460 (2021). [CrossRef] [Google Scholar]
  3. S. Yosaf, H. Gnaifaid, & A. Mizda, Thermoeconomic Assessments of Green Hydrogen Production Via PV&PEM Electrolyzer: A case study for Al-Jufra region in Libya. Solar Energy and Sustainable Development, 13(1), 57–70 (2024). https://doi.org/10.51646/jsesd.v13i1.172 [CrossRef] [Google Scholar]
  4. S. Z. Zhiznin, V. M. Timokhov, & A. L. Gusev, Economic aspects of nuclear and hydrogen energy in the world and Russia. Int. J. Hydrogen Energy, 45(56), 31353–31366 (2020). [CrossRef] [Google Scholar]
  5. M. Amin, H. H. Shah, A. G. Fareed, W. U. Khan, E. Chung, A. Zia, ... & C. Lee, Hydrogen production through renewable and non-renewable energy processes and their impact on climate change. Int. J. Hydrogen Energy, 47(77), 33112–33134 (2022). [CrossRef] [Google Scholar]
  6. J. L. Holechek, H. M. Geli, M. N. Sawalhah, & R. Valdez, A global assessment: can renewable energy replace fossil fuels by 2050? Sustainability, 14(8), 4792 (2022). [Google Scholar]
  7. T. P. Carpenter, & J. M. Moser, The development of addition and subtraction problemsolving skills. In Addition and subtraction (pp. 9–24). Routledge (2020). [CrossRef] [Google Scholar]
  8. A. Kebede, T. Kalogiannis, J. Van Mierlo, & M. Berecibar, A comprehensive review of stationary energy storage devices for large-scale renewable energy sources grid integration. Renew. Sustain. Energy Rev., 159, 112213 (2022). [CrossRef] [Google Scholar]
  9. S. Sikiru, T. L. Oladosu, T. I. Amosa, J. O. Olutoki, M. N. M. Ansari, K. J. Abioye, ... & H. Soleimani, Hydrogen-powered horizons: Transformative technologies in clean energy generation, distribution, and storage for sustainable innovation. Int. J. Hydrogen Energy, 56, 1152–1182 (2024). [CrossRef] [Google Scholar]
  10. I. Imbayah, M. Hasan, H. El-Khozondare, M. Khalee, A. Alsharif, A.A. Ahmed, Review paper on green hydrogen production, storage, and utilization techniques in Libya. Solar Energy and Sustainable Development. 13, 1–21 (2024). https://doi.org/10.51646/jsesd.v13i1.165 [CrossRef] [Google Scholar]
  11. Moretti, & M. E. Webber, Natural hydrogen: A geological curiosity or the primary energy source for a low-carbon future. Renewable Matter, 34(6), 1–6 (2021). [Google Scholar]
  12. M. K. Masood, W. Khan, K. Chaoui, Z. Ashraf, S. Bibi, A. Kanwal, ... & J. Rehman, Theoretical investigation of XSnH3 (X: Rb, Cs, and Fr) perovskite hydrides for hydrogen storage application. Int. J. Hydrogen Energy, 63, 1248 (2024). [CrossRef] [Google Scholar]
  13. M. Mohan, N. P. Shetti, & T. M. Aminabhavi, Perovskites: A new generation electrode materials for storage applications. J. Power Sources, 574, 233166 (2023). [CrossRef] [Google Scholar]
  14. L. Ouyang, F. Liu, H. Wang, J. Liu, X. S. Yang, L. Sun, & M. Zhu, Magnesium-based hydrogen storage compounds: A review. J. Alloys Compd., 832, 154865 (2020). [CrossRef] [Google Scholar]
  15. El Kharbachi, E. M. Dematteis, K. Shinzato, S. C. Stevenson, L. J. Bannenberg, M. Heere, ... & B. C. Hauback, Metal hydrides and related materials. Energy carriers for novel hydrogen and electrochemical storage. J. Phys. Chem. C, 124(14), 7599–7607 (2020). [CrossRef] [Google Scholar]
  16. J. A. Bolarin, R. Zou, Z. Li, Z. Zhang, & H. Cao, MXenes for magnesium-based hydrides: A review. Appl. Mater. Today, 29, 101570 (2022). [CrossRef] [Google Scholar]
  17. D. Feng, D. Zhou, Z. Zhao, T. Zhai, Z. Yuan, H. Sun, ... & Y. Zhang, Progress of graphene and loaded transition metals on Mg-based hydrogen storage alloys. Int. J. Hydrogen Energy, 46(67), 33468–33485 (2021). [CrossRef] [Google Scholar]
  18. Z. Ding, Y. Fu, L. Zhang, I. A. Rodríguez-Pérez, H. Zhang, W. Wang, ... & S. Han, Improve hydrogen sorption kinetics of MgH2 by doping carbon-encapsulated ironnickel nanoparticles. J. Alloys Compd., 843, 156035 (2020). [CrossRef] [Google Scholar]
  19. Z. Ding, Y. Li, H. Yang, Y. Lu, J. Tan, J. Li, ... & F. Pan, Tailoring MgH2 for hydrogen storage through nanoengineering and catalysis. J. Magnesium Alloys, 10(11), 2946–2967 (2022). [CrossRef] [Google Scholar]
  20. T. Sato, D. Nor´eus, H. Takeshita, & U. Haussermann, Hydrides with the perovskite structure: General bonding and stability considerations and the new representative CaNiH3. J. Solid State Chem., 178(11), 3381–3388 (2005). [CrossRef] [Google Scholar]
  21. S. Chunwen, A. A. Jose, & B. Juanjuan, Recent advances in perovskite-type oxides for energy conversion and storage applications, Adv. Energy Mater., 11(2), 2000459 (2021). [CrossRef] [Google Scholar]
  22. S. Ryutaro, S. Hiroyuki, E. Naruki, T. Shigeyuki, M. Motoaki, A. Katsutoshi, & O. Shinichi, Formation process of perovskite-type hydride LiNiH3: in situ synchrotron radiation X-ray diffraction study, Appl. Phys. Lett., 102(9) (2013). [Google Scholar]
  23. K. Ikeda, T. Sato, & S. Orimo, Perovskite-type hydrides – synthesis, structures and properties, Int. J. Mater. Res., 99(5) (2008). [Google Scholar]
  24. G. Y. Battal, S. Bahadır, S. Duman, Investigation of structural, mechanical, electronic, optical, and dynamical properties of cubic BaLiF3, BaLiH3, and SrLiH3, Mater. Res. Express, 3(3), 036301 (2016). [CrossRef] [Google Scholar]
  25. I. U. Haq, G. Rehman, H. A. Yakout, & I. Khan, Structural and optoelectronic properties of Ge-and Si-based inorganic two dimensional Ruddlesden Popper halide perovskites, Mater. Today Commun., 33, 104368 (2022). [Google Scholar]
  26. Y. Ziat, Z. Zarhri, H. Belkhanchi, & L. Cisneros-Villalobos, Ferromagnetism properties of Carbon co-doped LiMg (Fe, Ni) P half Heusler using DFT method, Funct. Mater. Lett., 16(5), 2350017 (2023). [CrossRef] [Google Scholar]
  27. Y. Ziat, Z. Zarhri, & H. Belkhanchi, Crystal field, electronegativity and magnetic behavior of Mn-, Fe-, Co-and Ni-doped LiMgN half-Heusler: KKR-CPA approximation, Int. J. Mod. Phys. B, 2450388 (2023). [Google Scholar]
  28. Z. Zarhri, Y. Ziat, H. Belkhanchi, & M. D. C. Torres-Salazar, (Ti, V, Fe and Ni)-doped LiMgP half Heusler-induced Ferromagnetism stability: DFT approach, Int. J. Mod. Phys. B, 2450225 (2023). [Google Scholar]
  29. F. A. Zhao, H. Y. Xiao, Z. J. Li. S. Liu, & X. T. Zu, A DFT study of mechanical properties, thermal conductivity and electronic structures of Th-doped Gd2Zr2O7, Acta Mater., 121, 299–309 (2016). [CrossRef] [Google Scholar]
  30. Y. Wang, Y. J. Hu, B. Bocklund, S. L. Shang, B. C. Zhou, Z. K. Liu, & L. Q. Chen, First-principles thermodynamic theory of Seebeck coefficients, Phys. Rev. B, 98(22), 224101 (2018). [CrossRef] [Google Scholar]
  31. M. Bürkle, T. J. Hellmuth, F. Pauly, & Y. Asai, First-principles calculation of the thermoelectric figure of merit for [2,2] paracyclophane-based single-molecule junctions, Phys. Rev. B, 91(16), 165419 (2015). [CrossRef] [Google Scholar]
  32. B. Ahmed, M. B. Tahir, N. Saima, A. Meshal, A. Akmal, S. Muhammad, & A. Hussein, An Ab-initio simulation of boron-based hydride perovskites XBH3 (X = Cs and Rb) for advance hydrogen storage system, Energy Res., 1225 (2023). [Google Scholar]
  33. P. Blaha, K. Schwarz, F. Tran, R. Laskowski, & M. G. K. H., DFT based first principles study of novel combinations of perovskite-type hydrides XGaH3 (X = Rb, Cs, Fr) for hydrogen storage applications, Chem. Phys., 11 (2020). [Google Scholar]
  34. A. Candan & M. Kurban, Electronic structure, elastic and phonon properties of perovskite-type hydrides MgXH3 (X = Fe, Co) for hydrogen storage, Solid State Commun., (2018). [Google Scholar]
  35. Garara, M., Benzidi, H., Abdellaoui, M., Lakhal, M., Benyoussef, A., Mounkachi, O., & Loulidi, M., Hydrogen storage properties of perovskite-type MgCoH3 under strain effect, Mater. Chem. Phys., 254, 123417 (2020). [CrossRef] [Google Scholar]
  36. M. Usman, J. ur Rehman, M. Bilal Tahir, & A. Hussain, Structural, electronics, magnetic, optical, mechanical and hydrogen storage properties of Ga-based hydrideperovskites XGaH3 (X= K, Li), Energy Res., (2022). [Google Scholar]
  37. ur Rehman, Zia, & al., A DFT study of structural, electronic, mechanical, phonon, thermodynamic, and H2 storage properties of lead-free perovskite hydride MgXH3 (X= Cr, Fe, Mn), J. Phys. Chem. Solids, 186, 111801 (2024). [CrossRef] [Google Scholar]
  38. Raza, Hafiz Hamid, & G. Murtaza, Optoelectronic and thermal properties of LiXH3 (X= Ba, Sr, Cs) for hydrogen storage materials: a first principle study, Solid State Commun., (2019). [Google Scholar]
  39. F. D. Murnaghan, The compressibility of media under extreme pressures, Proc. Natl. Acad. Sci., (1944). [Google Scholar]
  40. F. Murnaghan, On the theory of the tension of an elastic cylinder, Proc. Nat.Acad. Sci, (1944). [Google Scholar]
  41. B. P. Tarasov, P. V. Fursikov, A. A. Volodin, M. S. Bocharnikov, Y. Y. Shimkus, A. M. Kashin, ... & M. V. Lototskyy, Metal hydride hydrogen storage and compression systems for energy storage technologies, Int. J. Hydrogen Energy, 46(25), 13647–13657 (2021). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.