Open Access
Issue
E3S Web Conf.
Volume 582, 2024
1st International Conference on Materials Sciences and Mechatronics for Sustainable Energy and the Environment (MSMS2E 2024)
Article Number 02006
Number of page(s) 13
Section Materials Sciences in Energy
DOI https://doi.org/10.1051/e3sconf/202458202006
Published online 22 October 2024
  1. R. L. A. Rtemi, W. El-Osta, A. Attaiep, Hybrid system modeling for renewable energy sources. Solar Energy Sustainable Dev. 12, 1– (2023). https://doi.org/10.51646/jsesd.v12i1.146. [Google Scholar]
  2. M. G. M. Almihat, M. T. E. Kahn, Design and implementation of Hybrid Renewable energy (PV/Wind/Diesel/Battery) Microgrids for rural areas. Solar Energy Sustainable Dev. 12, 1–(2023). https://doi.org/10.51646/jsesd.v12i1.151. [Google Scholar]
  3. M. M. Shabat, H. El-Khozondar, S. Nassar, G. Zoppi, Y. Y. Nassar, Design and Optimization of Plasmonic Nanoparticles-Enhanced Perovskite Solar Cells Using the FDTD Method. Solar Energy Sustainable Dev. 13, 43–56 (2024). https://doi.org/10.51646/jsesd.v13i1.170. [CrossRef] [Google Scholar]
  4. A. Waqdim, M. Agouri, A. Abbassi, B. Elhadadi, Z. Zidane, S. Taj, M. El Idrissi, Theoretical investigation of the physical properties of cubic perovskite oxides SrXO3 (X= Sc, Ge, Si). Mater. Sci. Semicond. Process. 158, 107340 (2023). https://doi.org/10.1016/j.mssp.2023.107340. [CrossRef] [Google Scholar]
  5. M. Rizwan, A. Ayub, M. Shakil, Z. Usman, S. S. A. Gillani, H. B. Jin, C. B. Cao, Putting DFT to trial: For the exploration to correlate structural, electronic and optical properties of M-doped (M= Group I, II, III, XII, XVI) lead free high piezoelectric c-BiAlO3. Mater. Sci. Eng. B. 264, 114959 (2021). https://doi.org/10.1016/j.mseb.2020.114959. [CrossRef] [Google Scholar]
  6. Z. Cheng, J. Lin, Layered organic–inorganic hybrid perovskites: structure, optical properties, film preparation, patterning and templating engineering. CrystEngComm 12, 2646–2662 (2010). https://doi.org/10.1039/C001929A. [CrossRef] [Google Scholar]
  7. E. A. Katz, Perovskite: name puzzle and German–Russian odyssey of discovery. Helv. Chim. Acta 103, e2000061 (2020). https://doi.org/10.1002/hlca.202000061. [CrossRef] [Google Scholar]
  8. A. A. Adewale, A. Chik, T. Adam, O. K. Yusuff, S. A. Ayinde, Y. K. Sanusi, First principles calculations of structural, electronic, mechanical and thermoelectric properties of cubic ATiO3 (A= Be, Mg, Ca, Sr, and Ba) perovskite oxide. Comput. Condens. Matter 28, e00562 (2021). https://doi.org/10.1016/j.cocom.2021.e00562. [CrossRef] [Google Scholar]
  9. H. Lv, H. Gao, Y. Yang, L. Liu, Density functional theory (DFT) investigation on the structure and electronic properties of the cubic perovskite PbTiO3. Appl. Catal. A Gen. 404, 54–58 (2021). https://doi.org/10.1016/j.apcata.2011.07.010. [Google Scholar]
  10. S. Wang, X. Wang, L. Yuan, G. Ma, J. Zhang, Y. Zhang, D. Lu, Shape controllable synthesis of Bi-based perovskite superconductor microcrystals via a mild hydrothermal method. Crystal Growth Des. 20, 2123–2128 (2020). https://doi.org/10.1021/acs.cgd.9b01319. [CrossRef] [Google Scholar]
  11. G. A. Samara, Pressure and temperature dependence of the dielectric properties and phase transitions of the ferroelectric perovskites: PbTiO3 and BaTiO3. Ferroelectrics 2, 277–289 (1971). https://doi.org/10.1080/00150197108234102. [CrossRef] [Google Scholar]
  12. Y. Maeno, H. Hashimoto, K. Yoshida, S. Nishizaki, T. Fujita, J. G. Bednorz, F. Lichtenberg, Superconductivity in a layered perovskite without copper. Nature 372, 532–534 (1994). [CrossRef] [Google Scholar]
  13. Y. Selmani, M. Mouatassime, F. Goumrhar, H. Labrim, L. Bahmad, A. Benyoussef, Structural, electronic and magnetic properties of the perovskite Ymno3. Solid State Commun. 328, 114254 (2021). [CrossRef] [Google Scholar]
  14. L. Long, C. Ma, Y. Wang, X. Yuan, M. Du, R. Ma, Y. Cao, Luminescent performances of Mn4+ ions during the phase evolution from MgTiO3 to Mg2TiO4. Mater. Res. Bull. 85, 234–239 (2017). https://doi.org/10.1016/j.materresbull.2016.09.015. [CrossRef] [Google Scholar]
  15. P. Gogoi, P. Sharma, D. Pamu, Microwave and broadband dielectric properties of Ni substituted MgTiO3 ceramics. J. Mater. Sci.: Mater. Electron. 27, 9052–9060 (2016). https://doi.org/10.1007/s10854-016-4938-y. [CrossRef] [Google Scholar]
  16. L. Wang, G. Yang, S. Peng, J. Wang, D. Ji, W. Yan, S. Ramakrishna, Fabrication of MgTiO3 nanofibers by electrospinning and their photocatalytic water splitting activity. Int. J. Hydrogen Energy 42, 25882–25890 (2017). https://doi.org/10.1016/j.ijhydene.2017.08.194. [CrossRef] [Google Scholar]
  17. H. S. Magar, A. M. Mansour, A. B. A. Hammad, Advancing energy storage and supercapacitor applications through the development of Li+-doped MgTiO3 perovskite nano-ceramics. Sci. Rep. 14, 1849 (2024). [CrossRef] [Google Scholar]
  18. N. Kuganathan, P. Iyngaran, R. Vovk, A. Chroneos, Defects, dopants and Mg diffusion in MgTiO3. Sci. Rep. 9, 4394 (2019). https://doi.org/10.1038/s41598-019-40878-y. [CrossRef] [Google Scholar]
  19. A. Wathook, D. A. Hassan, Modified Sol-Gel Method of Synthesising a Mn4+-Doped Mg2TiO4: A Red Phosphor for Improved LED Performance. Ann. Chimie-Science des Matériaux 48, 11–16 (2024). https://doi.org/10.18280/acsm.480102. [CrossRef] [Google Scholar]
  20. R. P. Liferovich, R. H. Mitchell, Mn, Mg, and Zn ilmenite group titanates: A reconnaissance Rietveld study. Crystallography Reports 51, 383–390 (2006). [CrossRef] [Google Scholar]
  21. B. M. Thammanna, K. Viswanathan, H. P. Nagaswarupa, K. R. Vishnumahesh, Novel MgTiO3: Eu3+ nanophosphor its photometric analysis for multifunctional applications. Materials Today: Proceedings, 4(11), 12306–12313 (2017). https://doi.org/10.1016/j.matpr.2017.09.164 [CrossRef] [Google Scholar]
  22. Y. Ding, W. Que, J. He, W. Bai, P. Zheng, P. Li, J. Zhai, Realizing high-performance capacitive energy storage in lead-free relaxor ferroelectrics via synergistic effect design. Journal of the European Ceramic Society, 42(1), 129–139 (2022). https://doi.org/10.1016/j.jeurceramsoc.2021.09.051 [CrossRef] [Google Scholar]
  23. H. Li, B. Tang, Y. Li, Z. Qing, S. Zhang, Effects of Mg2.05SiO4.05 addition on phase structure and microwave properties of MgTiO3–CaTiO3 ceramic system. Materials Letters, 145, 30–33 (2015). https://doi.org/10.1016/j.matlet.2015.01.070 [CrossRef] [Google Scholar]
  24. V. M. Longo, L. S. Cavalcante, M. G. Costa, M. L. Moreira, A. T. Figueiredo, J. Andrés, E. Longo, First principles calculations on the origin of violet-blue and green light photoluminescence emission in SrZrO3 and SrTiO3, perovskites. Theoretical Chemistry Accounts, 124, 385–394 (2009). https://doi.org/10.1007/s00214-009-0628-7 [CrossRef] [Google Scholar]
  25. M. L. Moreira, J. Andres, V. M. Longo, M. S. Li, J. A. Varela, E. Longo, Photoluminescent behavior of SrZrO3/SrTiO3 multilayer thin films. Chemical Physics Letters, 473(4–6), 293–298 (2009). https://doi.org/10.1016/j.cplett.2009.03.021 [CrossRef] [Google Scholar]
  26. N. Zhang, Y. Qu, K. Pan, G. Wang, Y. Li, Synthesis of pure phase Mg1.2Ti1.8O5 and MgTiO3 nanocrystals for photocatalytic hydrogen production. Nano Research, 9, 726–734 (2016). https://doi.org/10.1007/s12274-015-0951-3 [CrossRef] [Google Scholar]
  27. W. Zhu, D. Han, L. Niu, T. Wu, H. Guan, Z-scheme Si/MgTiO3 porous heterostructures: Noble metal and sacrificial agent free photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 41(33), 14713–14720 (2016). https://doi.org/10.1016/j.ijhydene.2016.06.118 [CrossRef] [Google Scholar]
  28. R. Jin, W. Gao, J. Chen, H. Zeng, F. Zhang, Z. Liu, N. Guan, Photocatalytic reduction of nitrate ion in drinking water by using metal-loaded MgTiO3-TiO2 composite semiconductor catalyst. Journal of Photochemistry and Photobiology A: Chemistry, 162(2–3), 585–590 (2004). https://doi.org/10.1016/S1010-6030(03)00420-9 [CrossRef] [Google Scholar]
  29. S. Nazir, I. Mahmood, N. A. Noor, A. Laref, M. Sajjad, Ab-initio simulations of MgTiO3 oxide at different pressure. High Energy Density Physics, 33, 100715 (2019). https://doi.org/10.1016/j.hedp.2019.100715 [CrossRef] [Google Scholar]
  30. W. Kohn, L. J. Sham, Density functional theory. In Conference Proceedings-Italian Physical Society (Vol. 49, pp. 561–572). Editrice Compositori (1996). [Google Scholar]
  31. G. K. Madsen, P. Blaha, K. Schwarz, E. Sjöstedt, L. Nordström, Efficient linearization of the augmented plane-wave method. Physical Review B, 64(19), 195134 (2001). https://doi.org/10.1103/PhysRevB.64.195134 [CrossRef] [Google Scholar]
  32. P. Blaha, K. Schwarz, G. K. Madsen, D. Kvasnicka, J. Luitz, WIEN2k: An augmented plane wave + local orbitals program for calculating crystal properties (2001). [Google Scholar]
  33. F. Tran, P. Blaha, Accurate Band Gaps of Semiconductors and Insulators with a Semilocal Exchange-Correlation Potential. Physical Review Letters, 102(22), 226401 (2009). https://doi.org/10.1103/PhysRevLett.102.226401 [CrossRef] [PubMed] [Google Scholar]
  34. S. S. A. Gillani, R. Ahmad, M. Rizwan, M. Shakil, M. Rafique, G. Murtaza, H. B. Jin, First-principles investigation of structural, electronic, optical and thermal properties of Zinc doped SrTiO3. Optik, 201, 163481 (2020). https://doi.org/10.1016/j.ijleo.2019.163481 [CrossRef] [Google Scholar]
  35. V. G. Tyuterev, N. Vast, Murnaghan’s equation of state for the electronic ground state energy. Computational Materials Science, 38(2), 350–353 (2006). https://doi.org/10.1016/j.commatsci.2005.08.012 [CrossRef] [Google Scholar]
  36. F. D. Murnaghan, The compressibility of media under extreme pressures. Proceedings of the National Academy of Sciences, 30(9), 244–247 (1944). https://doi.org/10.1073/pnas.30.9.24 [CrossRef] [PubMed] [Google Scholar]
  37. L. Attou, A. Al-Shami, J. Boujemaâ, O. Mounkachi, H. Ez-Zahraouy, Predicting the structural, optoelectronic, dynamical stability and transport properties of Boron-doped CaTiO3: DFT based study. Physica Scripta, 97(11), 115808 (2022). https://doi.org/10.1088/1402-4896/ac95d8 [CrossRef] [Google Scholar]
  38. Y. Guo, X. Qiu, H. Dong, X. Zhou, Trends in non-metal doping of the SrTiO3 surface: A hybrid density functional study. Physical Chemistry Chemical Physics, 17(33), 21611–21621 (2015). https://doi.org/10.1039/C5CP03005F [CrossRef] [PubMed] [Google Scholar]
  39. J. A. Yan, C. Y. Wang, S. Y. Wang, Energetics, electronic structure and local magnetism of single 3d impurity in GaAs. Physics Letters A, 324(2–3), 247–253 (2004). [CrossRef] [Google Scholar]
  40. M. Radjai, A. Bouhemadou, D. Maouche, Structural, elastic, electronic and optical properties of the half-Heusler ScPtSb and YPtSb compounds under pressure. arXiv preprint arXiv:2112.09940 (2021). https://doi.org/10.5488/CMP.24.43702 [Google Scholar]
  41. R. Majumder, M. M. Hossain, D. Shen, First-principles study of structural, electronic, elastic, thermodynamic and optical properties of LuPdBi half-Heusler compound. Modern Physics Letters B, 33(30), 1950378 (2019). https://doi.org/10.1142/S0217984919503780 [CrossRef] [Google Scholar]
  42. C. M. I. Okoye, Theoretical study of the electronic structure, chemical bonding and optical properties of KNbO3 in the paraelectric cubic phase. Journal of Physics: Condensed Matter, 15(35), 5945 (2003). https://doi.org/10.1088/0953-8984/15/35/304 [CrossRef] [Google Scholar]
  43. C. Ambrosch-Draxl, R. Abt, The calculation of optical properties within WIEN97. ICTP Lecture Notes (1998). [Google Scholar]
  44. M. Kumar, R. P. Singh, A. Kumar, Opto-electronic properties of HfO2: a first principlebased spin-polarized calculations. Optik, 226, 165937 (2021). https://doi.org/10.1016/j.ijleo.2020.165937 [CrossRef] [Google Scholar]
  45. R. De L. Kronig, On the theory of dispersion of x-rays. Journal of the Optical Society of America, 12(6), 547–557 (1926). [CrossRef] [Google Scholar]
  46. J. S. Toll, Causality and the dispersion relation: logical foundations. Physical Review 104, 1760 (1956). https://doi.org/10.1103/PhysRev.104.1760. [CrossRef] [Google Scholar]
  47. A. Delin, O. Eriksson, R. Ahuja, B. Johansson, M. S. S. Brooks, T. Gasche, J. M. Wills, Optical properties of the group-IVB refractory metal compounds. Physical Review B 54, 1673 (1996). https://doi.org/10.1103/PhysRevB.54.1673. [CrossRef] [PubMed] [Google Scholar]
  48. S. Saha, T. P. Sinha, A. Mookerjee, Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO3. Physical Review B 62, 8828 (2000). https://doi.org/10.1103/PhysRevB.62.8828. [CrossRef] [Google Scholar]
  49. H. Bentour, K. Belasfar, M. Boujnah, M. El Yadari, A. Benyoussef, A. El Kenz, DFT study of Se/Mn and Te/Mn codoped SrTiO3 for visible light-driven photocatalytic hydrogen production. Optical Materials 129, 112431 (2022). https://doi.org/10.1016/j.optmat.2022.112431. [CrossRef] [Google Scholar]
  50. M. A. Momin, M. A. Islam, M. Nesa, M. Sharmin, M. J. Rahman, A. H. Bhuiyan, Effect of M (Ni, Cu, Zn) doping on the structural, electronic, optical, and thermal properties of CdI2: DFT-based theoretical studies. AIP Advances 11, 5 (2021). https://doi.org/10.1063/5.0050145. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.