Open Access
Issue
E3S Web Conf.
Volume 582, 2024
1st International Conference on Materials Sciences and Mechatronics for Sustainable Energy and the Environment (MSMS2E 2024)
Article Number 03001
Number of page(s) 11
Section Mechatronics in Energy
DOI https://doi.org/10.1051/e3sconf/202458203001
Published online 22 October 2024
  1. J. G. Njiri, D. Söffker, State-of-the-art in wind turbine control: trends and challenges. Renew. Sustain. Energy Rev. 60, 377–393 (2016). https://doi.org/10.1016/j.rser.2016.01.110. [CrossRef] [Google Scholar]
  2. O. Apata, D. T. O. Oyedokun, An overview of control techniques for wind turbine systems. Sci. Afr. 10, 566 (2020). [Google Scholar]
  3. E. Jos, N. Menezes, A. M. Araújo, N. Ege, S. Bouchonneau Da Silva, A review on wind turbine control and its associated methods (2017). [Google Scholar]
  4. H. Zuo, K. Bi, H. Hao, Renew. Sustain. Energy Rev. 121, 109710 (2020). [CrossRef] [Google Scholar]
  5. L. Yassine, B. F. Zahra, Y. Ait El Kadi, B. Mohammed, The efficiency of fuzzy logic control on the power stabilization of wind turbine. Adv. Sci. Technol. Innov. Springer Nature Switzerland, 139–145 (2024). [CrossRef] [Google Scholar]
  6. L. El Bakkali, Fuzzy logic control strategy for tracking the maximum power point of a horizontal axis wind turbine. Procedia Technol. 19, 599–606 (2015). [CrossRef] [Google Scholar]
  7. S. Azzouz, Innovative PID-GA MPPT controller for extraction of maximum power from variable wind turbine. Electrotech. Rev. 1, 117–122 (2019). [CrossRef] [Google Scholar]
  8. V. Gupta, D. Deb, Dynamic modeling and analysis of drivetrain systems in wind turbines. Wind Energy 21(9), 776–793 (2018). https://doi.org/10.1002/we.2208. [Google Scholar]
  9. F. B. Ashraf, H. Leheta, E. Mostafa, Effect of torsional vibrations on wind turbine control systems: A comparison of rigid and flexible shaft models. J. Renew. Sustain. Energy 11(3), 033302 (2019). https://doi.org/10.1063/1.5091341. [CrossRef] [Google Scholar]
  10. W. Shen, W. Zhu, Modeling and control of torsional vibrations in wind turbine drivetrains. Mech. Syst. Signal Process. 70-71, 1139–1152 (2016). https://doi.org/10.1016/j.ymssp.2015.09.037. [Google Scholar]
  11. A. Kusiak, H. Zheng, Z. Song, Dynamic modeling and control of a wind turbine drivetrain with flexible and rigid coupling. Renew. Energy 121, 449–459 (2018). https://doi.org/10.1016/j.renene.2018.01.069. [Google Scholar]
  12. R. E. Pérez, M. García-Sanz, F. Beltrán-Carbajal, Two-mass modeling and control of wind turbine drivetrains. J. Renew. Sustain. Energy 5(4), 043105 (2013). [CrossRef] [Google Scholar]
  13. H. Abusannuga, Verification of the self-starting problem of a vertical axis wind turbine with inclined blades. JSES 12(2), 65–74 (2023). [Google Scholar]
  14. S. Al-Behadili, Analysis of clean development mechanism for Dernah Wind Farm (I) project (Libya) by using AM0019 methodology. JSES 12(2), 47–64 (2023). [Google Scholar]
  15. M. M. G. Almihat, M. M. T. E. Kahn, Design and implementation of hybrid renewable energy (PV/Wind/Diesel/Battery) microgrids for rural areas. JSES 12(1), 71–95 (2023). [Google Scholar]
  16. B. Boukhezzar, H. Siguerdidjane, Comparison between linear and nonlinear control strategies for variable speed wind turbines. Control Eng. Pract. 18, 1357–1368 (2010). [CrossRef] [Google Scholar]
  17. H. Chojaa, A. Derouich, S. E. Chehaidia, O. Zamzoum, M. Taoussi, H. Elouatouat, Integral sliding mode control for DFIG based WECS with MPPT based on artificial neural network under a real wind profile. Energy Rep. 7, 4809–4824 (2021). https://doi.org/10.1016/j.egyr.2021.07.066. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.